Номинальные токи трансформаторов тока: Номинальный первичный ток трансформатора тока
Подбор трансформатора тока — ГОСТ, ПУЭ, таблицы, формулы
Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.
В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.
Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.
Выбор номинальных параметров трансформаторов тока
До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения.
1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.
2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.
Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.
Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000.
Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.
2.1 Проверка первичного тока на термическую стойкость производится по формуле:
Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.
iуд — ударный ток короткого замыкания
kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.
2.2 Проверка первичного тока на электродинамическую стойкость:
В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.
Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.
3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.
Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).
Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.
Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.
Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ
Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).
В таблице выше:
zр — сопротивление реле
rпер — переходное сопротивление контактов
rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.
Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.
Выбор ТТ для релейной защиты
Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:
Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.
Выбор трансформаторов тока для цепей учета
К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.
ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.
По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.
Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:
Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности.
Таблица предварительного выбора трансформатора тока по мощности и току
Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:
- при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
- при 25%-ой нагрузке вторичный ток больше 5% от 5А
Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)
К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.
Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.
Самое популярное
Номинальный вторичный ток — трансформатор — ток
Номинальный вторичный ток — трансформатор — ток
Cтраница 1
Номинальный вторичный ток трансформаторов тока равен 5 а. О случае, соли вторичный ток имеет другое значение, он приведен в сноске к типу трансформатора.
[1]
Номинальный вторичный ток трансформатора тока выбирается исходя из параметров присоединяемых к нему приборов и реле. [2]
Номинальный вторичный ток трансформаторов тока равен обычно 5 а, а точность трансформаторов тока, применяемых в городских электрических сетях, бывает 3 и 1 классов для питания реле и приборов второстепенного значения и класса 0 5 для питания счетчиков, ваттметров и щитовых амперметров, а также для применения в качестве образцовых ( эталонных) трансформаторов тока. [3]
Под номинальным вторичным током трансформатора тока понимают ток, для которого предназначены приборы, подлежащие присоединению к его вторичной обмотке. [4]
Проверяется и потребление в цепях тока защиты при номинальном вторичном токе трансформаторов тока.
[5]
В одной конструкции минимальный так срабатывания реле меньше 1 % номинального вторичного тока трансформатора тока. Реле предусмотрено со стабилизирующим сопротивлением, имеющим отпайки, калиброванные в вольтах. [6]
Сечение провода для шунтов должно быть рассчитано на длительное протекание номинального вторичного тока трансформаторов тока. [8]
Особую осторожность необходимо проявлять при подаче на панель токов, превышающих номинальные вторичные токи трансформаторов тока. При этом учитывается термическая стойкость обмоток реле и то, что в одной фазе с испытываемым реле, рассчитанным на большие токи, могут быть включены обмотки реле, рассчитанного на небольшие токи. Последние закорачиваются во избежание их повреждения токами большого значения. [9]
Особую осторожность необходимо проявлять при подаче на панель токов, превышающих номинальные вторичные токи трансформаторов тока. При этом учитывается величина термической устойчивости обмоток реле и то, что в одной фазе с испытываемым реле, рассчитанном на большие токи, могут быть включены обмотки реле, рассчитанного на небольшие токи. Последние закорачиваются во избежание их повреждения токами большой величины.
[10]
Пределы измерения ваттметров по току и напряжению должны в этом случае соответствовать номинальному вторичному току трансформаторов тока 5 а и номинальному вторичному напряжению трансформаторов — напряжения 100 в. [11]
На стадии курсового проектирования все параметры срабатывания защит ( токи, сопротивления, напряжения) определяются, как правило, в первичных величинах. Исключение составляют защиты, у которых уставки регулируются не плавно, а дискретно ( например, дифференциально-фазная) и поэтому должны быть выбраны во вторичных величинах. Кроме того, расчет параметров срабатывания во вторичных величинах необходим для защиты, указанной в задании, для выбора релейной аппаратуры, например типа реле тока. В этом случае необходимо выбрать коэффициент трансформации трансформаторов тока. Номинальный первичный ток трансформатора тока выбирается равным или незначительно превышающим максимальный ток нагрузки линии, указанный в задании. Номинальный вторичный ток трансформаторов тока составляет 5 А или 1 А, причем трансформаторы с номинальным током 1 А применяются, начиная с напряжения 220 кВ, в случае больших расстояний ( сотни метров) от их места установки до панелей релейной защиты.
[12]
Страницы: 1
Выбор трансформаторов тока
Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.
Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.
Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.
Зачем нужны трансформаторы тока
Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.
Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).
Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.
Как выбрать трансформатор тока
Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.
Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.
Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.
А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.
Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.
Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).
Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.
1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.
Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:
Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.
Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.
Расчет минимального и максимального значения коэффициента трансформации
Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.
Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.
Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.
Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.
Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.
Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).
Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.
Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов
Трансформаторы тока в переходных режимах / Статьи и обзоры / Элек.

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.
В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.
Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.
Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1
Где:
I1 — ток в первичной обмотке;
w1—количество витков первичной обмотки;
I2 — ток во вторичной обмотке;
w2 — количество витков вторичной обмотки;
Iнам — ток намагничивания.
Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.
В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.
Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т. к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.
Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.
Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).
Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке
Класс точности | Предел допускаемой погрешности | |||
---|---|---|---|---|
При номинальном первичном токе | При токе номинальной предельной кратности | |||
Токовой, % | Угловой | Полной, % | ||
5Р | ±1 | ±60’ | ±1,8 срад. | 5 |
10Р | ±3 | Не нормируют | 10 |
Здесь предполагается традиционный способ выбора ТТ для релейных защит — по кривой 10% погрешности — зависимости отношения максимального первичного тока к номинальному и сопротивлению (мощности) вторичной обмотки.
Вроде бы, глядя на кривую можно сказать, что достаточная кратность обеспечинвается в широких пределах вторичных нагрузок. Однако такой способ не является точным даже с учетом коэффициента, учитывающего влияние апериодической составляющей (1,2–2), ведь как уже описывалось выше, ток намагничивания в переходном режиме может многократно отличаться от тока намагничивания в установившемся режиме.
В этой связи существует необходимость внедрения в эксплуатацию специальных трансформаторов тока для работы РЗА в переходных режимах, а также новых классов точности для них. Данный факт был отмечен еще в 60–70-е года прошлого столетия отечественными специалистами, а сегодня реализован экспертами МЭК. Следует обратить внимание, что и в России с 1 января 2014 года действует новый стандарт — ГОСТ IEC 60044-1-2013 «Трансформаторы измерительные. Часть 1. Трансформаторы тока», но он совсем не для России, ведь распространяется только на трансформаторы тока для экспортных поставок. Кроме того, данный стандарт является переведенным IEC 60044-1:2003, который был принят за рубежом в 2003 году, то есть более 10 лет назад, где теперь вместо серии 60044 внедряется серия стандартов 61869.
При переходе от IEC 60044 к IEC 61869 состав документа претерпел некоторые изменения, поэтому ГОСТ IEC 60044-1-2013 для экспорта можно назвать, как минимум, не совсем актуальным. Кроме того, ГОСТ IEC 60044-1-2013 содержит ссылки на международные стандарты, которые официально не переведены на русский язык и не введены в действие на территории РФ, даже для продукции на экспорт. Иными словами, ситуация на сегодняшний день в плане стандартизации абсолютно такая же, как и несколько лет назад — имеются только планы и структуры предлагаемой нормативно-технической базы в области измерительных трансформаторов. А заказчикам требуются трансформаторы тока с нормируемыми метрологическими характеристиками в переходных режимах. Но в связи с отсутствием нормативной базы заказчики, например ОАО «ФСК ЕЭС», вынуждены формулировать требования «своими словами» и ссылаться на нелигитимный в стране стандарт, например: «трансформаторы должны обеспечивать с заданным классом точности предел погрешности в переходных режимах, включая цикл АПВ, в том числе и неуспешное АПВ «КЗ — отключение — пауза 1 сек. — включение» согласно требованиям МЭК 44-6», а не указывать требуемый конкретный класс точности, определенный действующим нормативным документом. Справедливости ради надо отметить, что стандарт организации СТО 56947007-29.180.085-2011 «Типовые технические требования к трансформаторам тока 110 и 220 кВ», создан исключительно в соответствии с действующими ГОСТами.
С отечественным ГОСТ 7746-2001 все понятно, теперь предлагаю разобраться «как у них». IEC 61869-2, кроме традиционных 5Р и 10Р (допускаемые погрешности соответствуют ГОСТ 7746-2001) нормирует следующие классы точности трансформаторов тока для релейной защиты:
- PR — трансформатор с лимитированным значением остаточной магнитной индукции (<10%).
Для него в некоторых случаях может указываться значение постоянной времени намагничивания, а также предел значения сопротивления обмотки. Величина допустимых погрешностей соответствует Таблице 1 и измеряется при токе номинальной предельной кратности.
- PX — трансформатор с низким значением индуктивного сопротивления, для которого известна вторичная характеристика намагничивания, сопротивление вторичной обмотки, сопротивление вторичной нагрузки и витковый коэффициент трансформации, а также учтены характеристики защитных устройств с которыми он будет использоваться.
- PXR — соответствует классу точности PX, но с ограничением остаточной магнитной индукции (<10%).
Также, в состав IEC 61869-2 вошли требования к классам точности трансформаторов тока для переходных режимов:
- TPX — метрологические характеристики определяеются максимальным мнгновеннным значением погрешности в течение заданного цикла переходного процесса.
Остаточный магнитный поток не ограничивается.
- TPY — метрологические характеристики определяются максимальным мнгновенным значением погрешности в течение заданного цикла переходного процесса. Остаточный магнитный поток не должен превышать 10% потока насыщения.
- TPZ — метрологические характеристики определяются аплитудным мнгновенным значением переменной составляющей тока в течение однократной подачи питания при максимальной постоянной составляющей и при заданной постоянной времени вторичной цепи. Требования по ограничению погрешности постоянной составляющей отсутствуют. Остаточный магнитный поток фактически должен отсутствовать.
Таблица 2. Погрешности трансформаторов тока классов TPX, TPY, TPZ
Класс | При номинальном первичном токе | При предельном значении первичного тока | ||
---|---|---|---|---|
Токовая погрешность, % | Угловая погрешность | Максимальное значение величины мгновенной погрешности в % | ||
минуты | сантирадианты | |||
TPX | ±1,0 | ±60 | ±1,8 | ε = 10 |
TPY | ±1,0 | ±60 | ±1,8 | ε = 10 |
TPZ | ±1,0 | 180±18 | 5,3±0,6 | εас = 10 |
При изготовлении трансформаторов тока классов TPX, TPY, TPZ на табличку с техническими данными трансформаторов тока дополнительно наносится следующая информация (Таблица 3).
Таблица 3. Дополнительная информация для трансформаторов тока классов TPX, TPY, TPZ
Класс ТТ | TPX | TPY | TPZ |
---|---|---|---|
Номинальный первичный ток | да | да | да |
Номинальный вторичный ток | да | да | да |
Номинальная частота | да | да | да |
Наибольшее напряжение оборудования и номинальный уровень изоляции | да | да | да |
Ith | да | да | да |
Idyn | да | да | да |
KТТ, к которому относится данная спецификация | да | да | да |
KSCC | да | да | да |
Tp | да | да | да |
Ts | —//— | да | -//- |
Временные характеристики рабочего цикла (однократного, двойного) | да | да | да |
Rb | да | да | да |
Где:
Ith— номинальный ток термической стойкости трансформатора тока.
Idyn— номинальный ток электродинамической стойкости трансформатора тока.
KТТ— коэффициент трансформации.
KSCC— коэффициент номинального симметричного тока короткого замыкания (отношение номинального первичного тока короткого замыкания к номинальному первичному току. Номинальный первичный ток КЗ — среднеквадратичное значение симметричного первичного тока КЗ, на основе которого определяются номинальные метрологические характеристики ТТ). Tp — заданная постоянная времени первичной цепи.
Ts — номинальная постоянная времени вторичной цепи (сумма индуктивности намагничивания и индуктивности рассеяния, отнесенное к активному сопротивлению вторичной цепи).
Временные характеристики рабочего цикла — временные параметры цикла «включение-отключение» или «включение-отключение-включение-отключение» — длительности первого и второго протекания тока, время запаздывания во время АПВ.
Rb — номинальная активная вторичная нагрузка.
Таким образом, в стандартах IEC имеется четыре варианта классов точности ( P, PX, PR, PXR), нормируемых для установившихся режимов. Также имеется три варианта классов точности (TPX, TPY, TPZ) для переходных процессов, что по моему мнению является более чем достаточным для организации правильной работы современных микропроцессорных релейных защит с максимально возможным быстродействием, в том числе в переходных режимах. Конечно, для получения столь подробных характеристик обмоток требуется приложить некоторые усилия как проектной организации, выбирающей трансформатор тока, так и производителю при конструировании ТТ. К счастью, на сегодняшний день методики расчета переходных процессов доступны, имеются программы для математического и графического моделирования, способные вычислить необходимые параметры сети и трансформатора тока. Предприятия, производящие трансформаторы тока по стандартам IEC, производят такие расчеты автоматизированным способом.
Учитывая набирающую с каждым годом обороты политику импортозамещения, сложные текущие отношения с европейскими государствами, а также растущий курс европейской валюты, на мой взгляд, отечественным производителям трансформаторов тока было бы не лишним перенять опыт западных коллег и наладить производство вышеописанных ТТ, а органам стандартизации — предварительно обеспечить соответствующую нормативно-техническую базу.
А. А. СЕРЯКОВ,
Группа компаний «РусЭнергоМир»
Список используемой литературы:
- ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия.
- ГОСТ IEC 60044-1-2013. Трансформаторы измерительные. Часть 1. Трансформаторы тока.
- IEC 61869-2 Instrument Transformers. Part 2: Current Transformers.
- IEC 60044-6 Instrument Transformers. Part 6: Requirements for Protective Current Transformers for Transient Performance.
- Н.В. Чернобровов. «Релейная защита», изд. «Энергия», 1971 г.
- В.
В. Афанасьев, Н.М. Адоньев, В.М. Кибель, И.М. Сирота, Б.С. Стогний. «Трансформаторы тока», изд. Энергоатомиздат, 1989 г.
- И.М. Сирота. «Переходные режимы работы трансформаторов тока», Издательство Академии Наук Украинской ССР, 1961 г.
- Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-29. 180.085-2011. Типовые технические требования к трансформаторам тока 110 и 220 кВ (с изменениями от 24.05.2013 г.).
- И. Матюхов. «Измерительные трансформаторы. Нормативно-техническая документация», Новости Электротехники, №1 (85) 2014 г.
Статья опубликована в журнале «Электротехнический рынок», № 3 (57), 2014
Номинальное напряжение, кВ | 110 | 220 |
Наибольшее рабочее напряжение, кВ | 126 | 252 |
Номинальная частота, Гц | 50 | |
Номинальный первичный ток I1ном (варианты исполнения), А
|
150-300-600; 200-400-800; 250-500-1000; 300-600-1200; 375-750-1500; 400-800-1600; 500-1000-2000
600; 800; 1000; 1200; 1500; 2000; 3000; 4000 |
|
Номинальный вторичный ток I2ном (варианты исполнения), А | 1 и 5 | |
Количество вторичных обмоток: 2)
|
1; 2 3; 4; 5 |
|
Классы точности вторичных обмоток для измерений | 0,2S; 0,5S; 0,2; 0,5 | |
Классы точности вторичных обмоток для защиты | 5Р; 10Р | |
Номинальная вторичная нагрузка, ВА
с коэффициентом мощности cos φ2 = 1
|
3; 5; 10; 15; 20; 25; 30; 50; 60; 75; 100
2 |
|
Номинальная предельная кратность вторичных обмоток для защиты Кном |
10; 20; 30; 40 |
|
Номинальный коэффициент безопасности приборов вторичной обмотки для измерений и учета К6ном |
от 5 до 15 | |
Ток термической стойкости IТ, кА |
253) 31,54) 40 (63)5) |
|
Ток электродинамической стойкости Iд, кА |
643) 804) 102 (160) 5) |
|
Время протекания тока термической стойкости, с | 1; 3 | |
Максимальный кажущийся разряд единичного частичного разряда, пКл, не более | 10 | |
Длина пути утечки, см | 285; 315; 390 | 630; 790 |
Изоляционная среда для климатического исполнения |
Элегаз Смесь элегаз+азот |
Элегаз — |
Утечка газа в год, % от массы газа, не более |
0,5 | |
Объем газа в трансформаторе тока, дм3 | 188 | 375 |
Масса газа в трансформаторе тока при давлении заполнения, кг
|
4,5 2,5+0,4 |
10,2 — |
Номинальное давление (давление заполнения) элегаза или смеси газов при температуре 20°C, МПа абс.![]() |
0,34 (3,4) | 0,42 (4,2) |
Сейсмостойкость, баллов по шкале MSK — 64 | 9 | |
Масса трансформатора, кг | 480 | 700 |
1) Три значения номинального первичного тока за счет переключения схемы (коэффициента трансформации) на контактном выводе первичной обмотки. 2) Вторичные обмотки могут иметь отпайки, необходимые для требуемого значения номинального первичного тока (коэффициента трансформации). 3) При включении трансформаторов тока на минимальный коэффициент трансформации ток электродинамической стойкости до 64 кА, 4) При включении трансформаторов тока на средний коэффициент трансформации ток электродинамической стойкости до 80 кА, ток термической стойкости до 31,5 кА. 5) При включении трансформаторов тока на максимальный коэффициент трансформации ток электродинамической стойкости от 102 до 160 кА, ток термической стойкости от 40 до 63 кА. |
Трансформаторы тока | КРАСП-РУС
Таблица устройств
Таблица габаритов
Список трансформаторов тока
Трансформаторы тока измерительные с универсальным (фигурным) или прямоугольным окном серии ASK Для монтажа на шину или кабель Общее описание Особенности:
|
|
Трансформаторы тока измерительные с круглым отверстием под кабель или втулку серии ASR. Общее описание Особенности:
|
Трансформатор тока с круглым отверстием для номинальных значений первичного тока от 50 A до 300 A, номинальные значения вторичного тока: 5 A, 2 A или 1 A, класс точности 1, с подвижными вторичными проводами подключения, номинальное значение поперечного сечения соединительных проводов: 2,5 мм², измерительная система залита полиуретановой смолой. |
Трансформаторы тока измерительные с комбинированным отверстием под кабель или шину серии CTB. Характеристики трансформаторов CTB:
|
Трансформаторы тока измерительные с разъемным сердечником серии KBU. Общее описание Особенности:
|
Трансформаторы тока измерительные с отверстием под кабель серии KBR. Трансформатор закрепляется на кабеле с помощью защелки за несколько секунд. Боковые зажимы дополнительно фиксируют трансформатор от перемещения вдоль кабеля. Каждый трансформатор имеет кабель вторичного тока с цветной маркировкой длиной 2,5 м (другая длина возможна по заказу). Номинальный вторичный ток — 1А или 5А, возможно также исполнение с выходным сигналом по напряжению 0-333 мВ. Трансформаторы KBR предназначены в первую очередь для использования в системах технического учета электроэнергии для измерения и регистрации потребления электроэнергии по отдельным фидерам. Общее описание Характеристики трансформаторов KBR:
|
Трансформаторы с первичной цепью, выполненной в виде обмотки или проходной шины, монтируемой в разрыв шины или кабеля. Серия WSK. Общее описание Особенности:
|
Суммирующий трансформатор тока для номинальных значений первичного тока 5 A или 1 A, номинальные значения вторичного тока: 5 A, 2 A или 1 A, классы точности 0,2, 0,5 и 1. |
Трансформаторы тока для реек с разъединителями-предохранителями для номинальных значений первичного тока от 100 A до 600 A, номинальные значения вторичного тока 5 A или 1 A, класс точности 3. |
Защитные проходные трансформаторы тока, для номинальных значений первичного тока от 50 A до 2000 A, номинальные значения вторичного тока 5 A, 2 A или 1 A, исполнение с классом защиты 5P5, 10P5, 5P10 и 10P10. |
Защитные трансформаторы тока с круглым отверстием для первичного провода, номинальные значения первичного тока от 100 A до 300 A, номинальные значения вторичного тока 5 A, 2 A или 1 A, исполнение с классом защиты 5P5 и 10P5. |
Комплект трехфазных трансформаторов тока, для номинальных значений первичного тока: от 3 x 50 A до 3 x 750 A, номинальные значения вторичного тока 5 A, 2 A или 1 A, с классами точности 0,2, 0,5s, 0,5 и 1. |
Проходные трансформаторы тока серии EASK для номинальных значений первичного тока от 50 A до 3000 A, номинальные значения вторичного тока 5 A или 1 A, с классами точности 0,2s, 0,2, 0,5s, 0,5 с разрешением на применение типа для коммерческого учета от PTB, Брауншвайг. |
Трансформаторы тока серии EASR с круглым отверстием для первичного провода, для номинальных значений первичного тока от 75 A до 600 A, номинальные значения вторичного тока 5 A или 1 A, с классами точности 0,2, 0,5s и 0,5, с разрешением на применение типа для коммерческого учета от PTB, Брауншвайг, поставка может проводиться по выбору заказчика с медной втулкой или с крепежем для шины. |
Трансформаторы тока с многовитковой первичной обмоткой для номинальных значений первичного тока от 25 A до 150 A, номинальные значения вторичного тока 5 A или 1 A, классы точности: 0,2, 0,5s и 0,5 с разрешением на применение типа для коммерческого учета от PTB, Брауншвайг и первичной обмоткой и первичными соединительными зажимами вместо отверстия для первичного провода. Серия EWSK. Особенности:
|
Суммирующие трансформаторы тока для номинальных значений первичного тока 5 A, вторичный номинальный ток 5 A, класс точности 0,2 С разрешением на применение типа для коммерческого учета от PTB, Брауншвайг. Расположенная после типового наименования цифра дает информацию о количестве подключаемых основных трансформаоров, при этом реально подключать макс. 8 первичных входов. |
Комплект трехфазных трансформаторов тока, для номинальных значений первичного тока 3 x 50 A и 3 x 750 A, номинальные значения вторичного тока 5 A или 1 A,классы точности: 0,2, 0,5s и 0,5. С разрешением на применение типа для коммерческого учета от PTB, Брауншвайг, для экономящей место инсталляции в распределительных энергосетях, комплект трансформаторов оснащен шиной первичного подключения и примонитрованной защитной крышкой (защита от касания). |
Общие сведения Трансформаторы тока типов ТЛ10-I и ТЛ10-II предназначены для передачи сигнала измерительной информации измерительным приборам, устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в электрических установках переменного тока на класс напряжения до 10 кВ. Трансформаторы тока встраиваются в комплектные распределительные устройства (КРУ). Структура условного обозначения ТЛ-10-Х-0,5/10Р-Х/5/Х Х3: Условия эксплуатации Высота над уровнем моря не более 1000 м. Температура окружающего воздуха (с учетом нагрева в шкафу КРУ) от минус 45 до 55°С. Атмосферное давление от 86,6 до 106,7 кПа. Относительная влажность воздуха до 80% при температуре 20°С. Окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих металлы и изоляцию (атмосфера типа II по ГОСТ 15150-69). Требования техники безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75. Трансформаторы соответствуют ГОСТ 7746-89, ТУ 16-97 ОГГ.671224.024 ТУ. ГОСТ 7746-89;ТУ 16-97 ОГГ.671224.024 ТУ Технические характеристики Основные технические данные трансформаторов тока приведены в табл. 1. Табл. 1 Все трансформаторы тока выпускаются с одной вторичной обмоткой для измерения и одной вторичной обмоткой для защиты. Трансформаторы на номинальные токи 1000-3000 А могут также выпускаться с двумя вторичными обмотками для защиты. Типовые кривые намагничивания магнитопроводов приведены на рис. 1, кривые предельной кратности — на рис. 2.Рис. 1-1. Рис. 1-2. Кривые намагничивания магнитопроводовРис. 2. Кривые предельной кратности для обмоток 10Р (нижний предел) — — — — кривые, находящиеся в зоне токов, превышающих термическую стойкость * Для вторичного тока 2,5 А. Гарантийный срок — 2 года со дня ввода трансформатора в эксплуатацию. Для трансформаторов, поставляемых на экспорт, гарантийный срок — 2 года со дня ввода в эксплуатацию, но не более 3 лет с момента проследования их через государственную границу России. Трансформатор тока представляет собой литой блок, в котором расположены первичные и вторичные обмотки. Вывод Л1 первичной обмотки предназначен для подсоединения плоской шины, а вывод Л2, расположенный внутри изоляционного стакана, — для подсоединения розеточного контакта выкатной части ячейки КРУ. Этот вывод выполнен в виде стержня диаметром 36 мм для конструктивного варианта исполнения I на номинальные токи от 50 до 1500 А, диаметром 55 мм для конструктивного варианта исполнения II на номинальные токи от 300 до 2000 А и в виде ножа размером 34×150 мм на ток 3000 А. Выводы вторичных обмоток расположены в углублениях литого корпуса. Трансформатор тока крепится в КРУ с помощью четырех резьбовых втулок с резьбой М12 на глубину 20 мм в любом положении относительно горизонта. Габаритные, установочные и присоединительные размеры трансформатора тока приведены на рис. 3 и 4. Конструктивные данные трансформатора тока приведены в табл. 2.Табл. 2 Рис. 3. Табл. к рис. 3 Габаритные, установочные, присоединительные размеры и масса трансформаторов тока типов ТЛ10-I и ТЛ10-IIРис. 4. Табл. к рис. 4 Габаритные, установочные, присоединительные размеры трансформаторов тока типов ТЛ10-I и ТЛ10-II на номинальные токи 2000 и 3000 А В комплект поставки входят: трансформатор тока, паспорт, техническое описание и инструкция по эксплуатации. Трансформаторы тока классифицируются по номерам конструктивного варианта исполнения. Трансформаторы тока типа ТЛ10-I выпускаются на ток отключения до 31,5 кА, а ТЛ10-II — на ток отключения до 40 кА.Центр комплектации «СпецТехноРесурс» |
МЭК и NEMA / IEEE номиналы трансформаторов тока в приложениях среднего напряжения
Назначение измерения и защиты
Во-первых, давайте напомним основы в нескольких предложениях. Вы должны это знать. Трансформатор тока (ТТ) предназначен для выработки вторичного тока, который точно пропорционален первичному току. Он состоит из одной первичной обмотки, через которую проходит внешняя шина или кабель, или может иметь одну первичную шину, выведенную на два конца для оконечной нагрузки.
Классификация трансформаторов тока (ТТ) для распределительного устройства среднего напряжения согласно стандартам IEC и NEMA (фото предоставлено Energie Technik Becker GmbH)Трансформатор тока среднего напряжения может иметь до трех независимых комплектов вторичных обмоток. Вся сборка трансформатора тока залита смолой внутри изолированного корпуса. Трансформаторы тока используются для измерения или защиты.
Класс точности и размер зависят от конкретного приложения — например, для коммерческого учета будут использоваться измерительные трансформаторы высокой точности.
Отметим, что очень важно, чтобы никогда не оставлял разомкнутую цепь вторичной обмотки трансформатора тока . Это создает чрезвычайно высокое напряжение, которое представляет реальную опасность для персонала.
Хорошо, давайте перейдем к номинальным характеристикам трансформатора тока IEC, а затем и NEMA. В некоторых пояснениях к рейтингам есть упражнения и реальные примеры, которые, я надеюсь, помогут лучше понять.
- Номинальные параметры трансформатора тока по IEC
- Номинальный первичный ток
- Номинальный вторичный ток: Isr
- Коэффициент трансформации: Kn
- Номинальный кратковременный термический выдерживаемый ток: Ith (кА)
- Коэффициент перегрузки по току: Ksi
- напряжение цепи: Up (кВ)
- Номинальная частота
- Номинальная реальная выходная мощность (ВА)
- Упражнения
- Класс измерения CT
- Класс защиты CT
- Пример
- Выбор трансформаторов тока
- Упражнение для выберите подходящие трансформаторы тока
- Упражнение № 1
- Упражнение № 2
- Упражнение № 3
- Упражнение для выберите подходящие трансформаторы тока
- Номиналы трансформатора тока NEMA / IEEE
- Класс точности
- Рейтинг класса
- Нагрузка
- Примеры
1.Рейтинги IEC
1.1 Номинальный первичный ток: I
pr (A)Номинальный первичный ток ТТ должен быть больше ожидаемого максимального рабочего тока, который он контролирует.
Номинальный ток первичной обмотки измерительного ТТ не должен превышать , в 1,5 раза превышающего максимальный рабочий ток . Номинальный ток первичной обмотки ТТ защиты должен быть выбран таким образом, чтобы уровень срабатывания защиты достигался во время короткого замыкания.
Стандартные значения для I pr : 10, 12.5, 15, 20, 25, 30, 40, 50, 60, 75 A и десятичные числа, кратные этим значениям (источник: IEC 60044-1)
Вернуться к таблице содержания ↑
1,2 Номинальный вторичный ток: I
srНоминальный вторичный ток ТТ составляет 1 А или 5 А . ТТ с вторичным номиналом 5 А становятся все менее распространенными, поскольку все больше оборудования, управляемого ТТ, становится цифровым. Для длинных кабелей вторичной обмотки трансформаторы тока с вторичной обмоткой 1 А могут уменьшить размер трансформатора и вторичного кабеля.
Вернуться к таблице содержания ↑
1.3 Коэффициент трансформации: K
nЭто отношение витков вторичной обмотки к первичной: K n = N с / N p = I pr / I sr
Рисунок 1 — Паспортная табличка трансформатора токаВернуться к таблице содержания ↑
1.4 Номинальный кратковременный термический выдерживаемый ток: I
th (кА)Это наивысший уровень среднеквадратичной ошибки первичной обмотки ток, который ТТ может выдерживать, как термически, так и динамически, в течение 1 секунды без повреждений .При использовании в шкафу среднего напряжения рейтинг I -го должен соответствовать кратковременной стойкости всего распределительного устройства.
Вернуться к таблице содержания ↑
1,5 Коэффициент перегрузки по току: K
siЭто отношение номинального кратковременного выдерживаемого тока ТТ к его номинальному току первичной обмотки:
K si = I th / I pr
Этот коэффициент показывает, насколько сложно было бы изготовить ТТ.Более высокий коэффициент означает физически больший трансформатор тока, который труднее изготовить.
- Если K si <100 , производство просто
- Если K si 100 ~ 500, производство затруднено с определенными ограничениями
- Если K si > 500 это чрезвычайно сложно для производства
Вернуться к таблице содержания ↑
1.6 Номинальное напряжение первичной цепи: U
p (кВ)Номинальное напряжение первичной цепи указывает уровень изоляции, обеспечиваемой трансформатором тока.Если ТТ кольцевого типа устанавливается вокруг кабеля или ввода, уровень изоляции может быть обеспечен кабелем или вводом.
Номинальное первичное напряжение Upr (кВ) | Подходящий рабочий диапазон U (кВ) | Выдерживаемое напряжение промышленной частоты (кВ) действующее значение в течение 1 минуты | Выдерживаемое напряжение грозового импульса (кВ), пиковое, 1,2 / 50 мкс | |||||||||||||
7,2 | 33-7,2 | 20 | 60 | |||||||||||||
12 | 6-12 | 28 | 75 | |||||||||||||
17.5 | 10-17,5 | 38 | 95 | |||||||||||||
24 | 12-24 | 50 | 125 | |||||||||||||
36 | 20-36 | 70 | 1709 | 70 |
Источник | Номинальный первичный ток I pr (A) |
Источник от трансформатор | I пр ≥ 1.0-1,25 номинального тока источника |
Фидер к трансформатору | I pr ≥ 1,0-1,25 номинального первичного тока трансформатора |
Фидер к двигателю | I pr ≥ 1,0-1,5 полной нагрузки двигателя ток |
Фидер к конденсаторной батарее | I pr ≥ 1,3-1,5 номинального тока конденсатора |
Номинальный вторичный ток: I sr (A)
- Используйте 1 A и 5 A для локальной установки
- Используйте 1 A для удаленной установки
1.11.2 Реальная выходная мощность (ВА)
Фактическая выходная мощность ТТ должна быть следующей по величине номинальной величиной, превышающей ожидаемую общую нагрузку на вторичную обмотку ТТ. Общая нагрузка складывается из выходного кабеля, разъемов и инструментов.
1.11.3 Тип класса
Используйте измерительный трансформатор класса CT для измерения и индикации. ТТ более высокого класса обеспечивает большую точность между первичным и вторичным токами.
Используйте трансформатор тока класса защиты 5PX для входов реле защиты по току.ALF должен быть выбран таким образом, чтобы точка срабатывания реле лежала на линейной части кривой вторичного тока, между 50% и 100% от ALF .
Вернуться к таблице содержимого ↑
1.11.4 Exercise
Выберите подходящие трансформаторы тока для следующих цепей ввода трансформатора и фидера.
Рисунок 5 — Пример ввода трансформатора и фидера для выбора подходящих ТТГде:
1. Входное устройство трансформатора:
- Трансформатор среднего / среднего напряжения (TXR1): 5 МВА, 36/11 кВ, 10% Z
- Уставка отключения по мгновенному максимальному току = 15 × In для цифрового реле защиты (OC1), отключенного от CT1-2
- Электромагнитный амперметр (A) срабатывает от CT1-1
2.Фидер трансформатора:
- Трансформатор СН / НН (TXR2): 2 МВА, 11 / 0,4 кВ, 5% Z
- Уставка мгновенного отключения при перегрузке по току = 10 × In для цифрового реле защиты (OC2), отключенного от CT2
Go назад к таблице содержания ↑
Упражнение 1 — Измерение CT1-1 для цепи ввода трансформатора:
Шаг 1 — Рассчитайте номинальный вторичный ток трансформатора TXR1: I n (A)
- I n = S / (√3 × U) = 5000 / (√3 × 11) = 262 A
- Вторичный ток для TXR1 составляет 262 A
Шаг 2 — Рассчитанный макс.ожидаемый ток короткого замыкания при установке CT1: I sc (A)
- Игнорирование импеданса силового кабеля или сборной шины:
- I sc = In × 100 / Z = 262 × 100/10 = 2620 A
- Максимальный ожидаемый ток короткого замыкания на CT1 составляет 2620 A
Шаг 3 — Выбор измерения номинальных значений CT1-1:
- Номинальный первичный ток: I pr = (1,0-1,25) × In = (1,0 -1,25) × 262 A
Используйте номинал 300 A - Номинальный вторичный ток: I sr
Используйте номинал 1 A - Кратковременная стойкость: I th ≥ I sc
Используйте номинал 10 кА - Напряжение первичной цепи: U p ≥ U
Используйте номинал 12 кВ - Реальная выходная мощность: Обычно> 3 ВА для электромагнитного счетчика
Используйте 5 ВА (это позволяет 2 ВА для кабельной нагрузки и т. Д.) - Класс точности
Класс использования 1.0 (общий класс для общих измерений)
Вернуться к таблице содержания ↑
Упражнение 2 — Защита CT1-2 для цепи ввода трансформатора:
Шаг 1 — Выберите общие для измерительных и защитных ТТ
- Первичный / вторичный номинальный ток: Использование 300/1 A
- Кратковременная выдерживаемость [I th ]: Использование номиналом 10 кА
- Первичный напряжение цепи [U p ]: Используйте номинальное напряжение 12 кВ
Шаг 2 — Выберите реальную выходную мощность
- Фактическая выходная мощность: обычно> 1 ВА для реле защиты цифрового типа
- Используйте 2.5 ВА (это позволяет нагрузку на кабель 1,5 ВА и т. Д.)
Шаг 3 — Рассчитайте класс защиты 5PX
- Уровень мгновенного тока срабатывания реле защиты OC1 установлен на 15 × In.
- I TRIP = 15 × 262 = 3930 A (первичный ток)
Примечание: В большинстве цифровых реле защиты уровни тока отключения устанавливаются относительно вторичного тока. В данном случае
- I SEC = 3900/300 × 1 = 13.1 A
- Уровень мгновенного тока отключения для вторичной обмотки ТТ составляет 13,1 A
Уровень тока отключения должен находиться в пределах от 100 до 50% от предельного коэффициента точности (ALF). При использовании ALF 10 (5P10) уровень тока отключения 3930 A выходит за пределы диапазона от 100% до 50% ALF, поэтому ТТ класса защиты 5P10 не подходит.
- 100% (ALF) = 1,0 × 10 × 300 = 3000 A
- 50% (ALF) = 0,5 × 10 × 300 = 1500 A
Мы можем заметить, что 1500 ≤ 3930 ≥ 3000 А .При ALF 15 (5P15) уровень тока отключения 3930 A попадает в диапазон от 100% до 50% ALF, поэтому подходит трансформатор тока класса защиты 5P15.
- 100% (ALF) = 1,0 × 15 × 300 = 4500 A
- 50% (ALF) = 0,5 × 15 × 300 = 2250 A
Мы можем заметить, что 2250 ≤ 3930 ≤ 4500 A . Используйте класс защиты 5P15
Вернуться к таблице содержания ↑
Упражнение 3 — Защита CT2 для цепи фидера трансформатора:
Шаг 1 — Расчет номинального первичного тока трансформатора TXR2: I n (A)
- I n = S / (√3 × U) = 2000 / (√3 × 11) = 105 A
- Первичный ток для TXR2 составляет 105 A
Шаг 2 — Расчетное максимальное ожидаемое короткое замыкание ток цепи при установке CT2: I sc (A)
- Игнорирование любого импеданса силового кабеля или сборной шины
- I sc = In × 100 / Z = 105 × 100/5 = 2100 A
- Максимум ожидаемый ток короткого замыкания на CT2 составляет 2100 A
Шаг 3 — Выберите параметры защиты CT2
- Номинальный первичный ток I pr = (1.0 — 1,25) × In = (1,0 — 1,25) × 105
Используйте номинал 150 A - Номинальный вторичный ток I sr
Используйте номинал 1 A - Кратковременная стойкость , I th ≥ I sc
Используйте номинал 10 кА - Напряжение первичной цепи U p ≥ U
Используйте номиналы 12 кВ - Реальная выходная мощность: Обычно> 1 ВА для реле защиты цифрового типа.
Используйте 2,5 ВА (это позволяет 1,5 ВА для нагрузки на кабель и т. Д.)
Шаг 4 — Рассчитайте класс защиты 5PX
- Уровень мгновенного срабатывания реле защиты OC2 установлен на 10 × In
- I TRIP = 10 × 105 = 1050 A (первичный ток)
Примечание: В большинстве цифровых реле защиты уровни тока отключения устанавливаются относительно вторичного тока. В данном случае
- I SEC = 3900/300 × 1 = 13.1 A
- Уровень мгновенного тока отключения для вторичной обмотки ТТ составляет 7 A
Уровень тока отключения должен находиться в пределах от 100 до 50% от предельного коэффициента точности (ALF). При использовании ALF 10 (5P10) уровень тока отключения 1050 А попадает в диапазон от 100% до 50% ALF, поэтому подходит трансформатор тока класса защиты 5P10.
- 100% (ALF) = 1,0 × 10 × 150 = 1500 A
- 50% (ALF) = 0,5 × 10 × 150 = 750 A
- Мы можем заметить, что 750 ≤ 1050 ≤ 1500 A
- Используйте класс защиты 5P10
Вернуться к таблице содержания ↑
2.Рейтинги NEMA / IEEE
Эти рейтинги обычно используются для трансформаторов тока, производимых или используемых в установках в Северной Америке. Помимо заявленного отношения номинального тока первичной и вторичной обмоток, устройство также имеет общий рейтинг точности в формате.
AC-CR-BU
Где:
- AC = класс точности
- CR = рейтинг класса
- BU = максимальная нагрузка (Ом)
2.1 Класс точности
Обозначает точность вторичной обмотки ток по отношению к номинальному первичному току.Эта точность гарантируется только при условии, что максимальная нагрузка не превышена.
Класс точности | Допуск при 100% первичном токе | ||
1,2 | ± 1,2% | ||
0,6 | ± 0,6% | ||
0,5 | ± 0,3% |
Вернуться к таблице содержимого ↑
2.2 Рейтинг класса
Обозначает предполагаемое применение устройства.
- B = для приложений измерения
- H = для приложений защиты. Точность вторичной обмотки трансформатора тока гарантирована в 5-20 раз больше номинального номинального тока первичной обмотки
Вернуться к таблице содержания ↑
2.3 Нагрузка
Максимальная нагрузка, разрешенная для подключения к вторичной обмотке трансформатора тока, чтобы гарантировать класс точности . Максимальная нагрузка включает вторичный кабель / провод, соединители и нагрузку.
Следующая таблица преобразует нагрузку в Ом в ВА для вторичной обмотки 5 А.
Ом | 0,04 | 0,06 | 0,08 | 0,12 | 0,16 | 0,20 | 0,24 | 0,28 | 0,33 0,419 | 0,28 | 0,32 0,49 | 0,32 | 0,28 | 0,72 | 0,80 | |
VA | 1 | 1,5 | 2 | 3 | 4 | 5 | 6 | 7 | 90198 | 14 | 16 | 18 | 20 |
Вернуться к таблице содержимого ↑
tabela
2.4 Примеры
0,5-B-0,1
В этом примере показан трансформатор тока с точностью ± 0,5% и максимально допустимой вторичной нагрузкой 0,1 Ом (или 2,5 ВА на вторичном трансформаторе тока 5 А). Это трансформатор номинального тока измерительного класса.
1,2-H-0,2
В этом примере показан трансформатор тока с точностью ± 1,2% и максимально допустимой вторичной нагрузкой 0,2 Ом (или 5 ВА на вторичном трансформаторе тока 5 А). Это трансформатор тока с номинальным классом защиты.
Вернуться к таблице содержания ↑
Источники:
- Руководство по применению среднего напряжения от Aucom
- Проектирование электрических подстанций Джеймсом С. Берком
- Выбор трансформаторов тока и проводов расчет размеров на подстанциях — Сетураман Ганесан; ABB Inc.
Выбор трансформаторов тока — Janitza electronics
Коэффициент трансформации
Коэффициент трансформации — это отношение между номинальным током первичной обмотки и номинальным током вторичной обмотки, которое указано на паспортной табличке в виде неупрощенной дроби.
Чаще всего используются трансформаторы тока х / 5 А. Большинство измерительных устройств имеют высший класс точности при 5 A. По техническим и, более того, экономическим причинам, трансформаторы тока x / 1 A рекомендуются с большой длиной измерительного кабеля. Потери в линии с трансформаторами на 1 А составляют всего 4% по сравнению с трансформаторами на 5 А. Однако измерительные устройства здесь часто демонстрируют более низкую точность измерения.
Номинальный ток
Номинальный или номинальный ток (предыдущее обозначение) — это значения первичного и вторичного тока, указанные на паспортной табличке (первичный номинальный ток, вторичный номинальный ток), для которых рассчитан трансформатор тока.Стандартизованные номинальные токи составляют (кроме классов 0,2 S и 0,5 S) 10 — 12,5 — 15 — 20 — 25 — 30 — 40 — 50 — 60 — 75 А, а также их десятичные кратные и доли. Стандартные вторичные токи составляют 1 и 5 А, предпочтительно 5 А.
Стандартизованные номинальные токи для классов 0,2 S и 0,5 S составляют 25-50-100 A и их десятичные кратные, а также вторичный (только) 5 A.
Правильный выбор первичного номинального тока важен для точности измерения.Рекомендуется коэффициент, немного превышающий измеренный / определенный максимальный ток нагрузки (In).
Пример: In = 1,154 А; выбранный коэффициент трансформации = 1,250 / 5.
Номинальный ток также может быть определен на основе следующих соображений:
- В зависимости от сетевого трансформатора номинальный ток, умноженный на прибл. 1.1 (следующий типоразмер трансформатора)
- Защита (номинальный ток предохранителя = первичный ток ТТ) измеряемой части системы (LVDSB, распределительные щиты)
- Фактический номинальный ток, умноженный на 1.2 (если фактический ток значительно ниже номинального тока трансформатора или предохранителя, следует выбрать этот подход)
Следует избегать завышения размеров трансформатора тока, в противном случае точность измерения значительно снизится, особенно при малых токах нагрузки.
Рис .: Расчет номинальной мощности Sn (медная линия 10 м)Номинальная мощность
Номинальная мощность трансформатора тока является произведением номинальной нагрузки на квадрат вторичного номинального тока и выражается в ВА.Стандартные значения составляют 2,5 — 5 — 10 — 15 — 30 ВА. Также допустимо выбирать значения более 30 ВА в зависимости от случая применения. Номинальная мощность описывает способность трансформатора тока «управлять» вторичным током в пределах погрешности через нагрузку.
При выборе подходящей мощности необходимо учитывать следующие параметры: Потребляемая мощность устройства (при последовательном подключении), длина линии, сечение линии. Чем больше длина линии, тем меньше ее поперечное сечение, чем выше потери через поставку, т.е.е. номинальная мощность ТТ должна быть выбрана такой, чтобы она была достаточно высокой.
Потребляемая мощность должна быть близка к номинальной мощности трансформатора. Если потребляемая мощность очень низкая (недогрузка), то коэффициент перегрузки по току увеличится, и измерительные устройства будут недостаточно защищены в случае короткого замыкания при определенных обстоятельствах. Если потребление энергии слишком велико (перегрузка), это отрицательно влияет на точность.
Трансформаторы тока часто уже встроены в установку и могут использоваться в случае дооснащения измерительным устройством.В этом случае необходимо учитывать номинальную мощность трансформатора: достаточно ли ее для работы дополнительных измерительных устройств?
Классы точности
Трансформаторы тока делятся на классы в зависимости от их точности. Стандартные классы точности — 0,1; 0,2; 0,5; 1; 3; 5; 0,1 с; 0,2 с; 0,5 S. Знак класса соответствует кривой погрешности, относящейся к текущей и угловой погрешностям.
Класс точности трансформаторов тока зависит от измеряемой величины.Если трансформаторы тока работают с малым током по отношению к номинальному току, то точность измерения снижается. В следующей таблице показаны значения пороговой погрешности с учетом значений номинального тока:
Мы всегда рекомендуем трансформаторы тока с таким же классом точности для измерительных устройств UMG. Трансформаторы тока 1 с более низким классом точности приводят во всей системе — трансформатор тока + измерительное устройство — к более низкой точности измерения, которая в данном случае определяется классом точности трансформатора тока.Однако использование трансформаторов тока с меньшей точностью измерения, чем измерительный прибор, технически возможно.
Измерительный трансформатор тока по сравнению с защитным трансформатором тока
В то время как измерительные трансформаторы тока предназначены для достижения точки насыщения как можно быстрее, как только они превышают свой рабочий диапазон тока (выраженный коэффициентом перегрузки по току FS), чтобы избежать увеличения вторичной обмотки ток с замыканием (например,грамм. короткое замыкание) и для защиты подключенных устройств. С защитными трансформаторами насыщение должно лежать как можно дальше.
Защитные трансформаторыиспользуются для защиты системы вместе с необходимым распределительным устройством. Стандартные классы точности для защитных трансформаторов — 5P и 10P. «P» означает здесь «защита». Номинальный коэффициент перегрузки по току помещается после обозначения класса защиты (в%). Таким образом, 10P5, например, означает, что при пятикратном номинальном токе отрицательное отклонение вторичной стороны от ожидаемого значения будет не более 10% в соответствии с коэффициент (линейный).
Для работы измерительных устройств UMG настоятельно рекомендуется использовать измерительные трансформаторы тока.
Стандартная шина трансформатора тока
Понимание соотношения, полярности и класса
Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное потоку тока. Фото: Викимедиа.
Основная функция трансформатора тока — обеспечивать управляемый уровень напряжения и тока, пропорциональный току, протекающему через его первичную обмотку, для работы измерительных или защитных устройств.
В своей основной форме трансформатор тока состоит из многослойного стального сердечника, вторичной обмотки вокруг сердечника и изоляционного материала, окружающего обмотки.
Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное потоку тока.
Если этот ток проходит через первичную обмотку трансформатора тока, железный сердечник внутри становится намагниченным, что вызывает напряжение во вторичных обмотках.Если вторичная цепь замкнута, через вторичную обмотку будет протекать ток, пропорциональный коэффициенту трансформатора тока.
ТТ с разомкнутой цепью
ОПАСНО: Трансформаторы тока должны оставаться закороченными до тех пор, пока не будут подключены к вторичной цепи. Трансформаторы тока обычно подключаются к клеммной колодке, где можно установить закорачивающие винты, чтобы связать изолированные точки вместе.
Важно, чтобы к трансформатору тока всегда была подключена нагрузка или нагрузка, когда он не используется, в противном случае на клеммах вторичной обмотки может возникнуть опасно высокое вторичное напряжение.
Типы трансформаторов тока
Существует четыре типичных типа трансформаторов тока: оконный, проходной, стержневой и обмотанный . Первичная обмотка может состоять просто из первичного проводника тока, проходящего один раз через отверстие в сердечнике трансформатора тока (оконного или стержневого типа), или она может состоять из двух или более витков, намотанных на сердечник вместе с вторичной обмоткой (намотанной тип).
Оконные и линейные трансформаторыявляются наиболее распространенными трансформаторами тока, встречающимися в полевых условиях.Фото: ABB
1. Окно CT
Оконные трансформаторы токаимеют конструкцию без первичной обмотки и могут иметь конструкцию со сплошным или разъемным сердечником. Эти трансформаторы тока устанавливаются вокруг проводника и являются наиболее распространенным типом трансформаторов тока в полевых условиях.
Установка оконных трансформаторов тока со сплошной сердцевиной требует отключения первичного провода. Трансформаторные трансформаторы тока с оконным разделением сердечника могут быть установлены без предварительного отключения первичного проводника и обычно используются в приложениях для мониторинга и измерения мощности.
ТТ нулевой последовательности — это тип оконного ТТ, который обычно используется для обнаружения замыкания на землю в цепи путем суммирования тока по всем проводникам одновременно. В нормальном режиме работы эти токи будут векторно равны нулю.
Оконный трансформатор тока нулевой последовательности
Когда происходит замыкание на землю, поскольку часть тока идет на землю и не возвращается на другие фазы или нейтраль, трансформатор тока обнаружит этот дисбаланс и отправит сигнал вторичного тока на реле.ТТ нулевой последовательности устраняют необходимость в использовании ТТ с несколькими окнами, выходы которых суммируются, за счет использования одного ТТ, окружающего все проводники.
2. Стержневой CT
Трансформаторы тока типаработают по тому же принципу, что и оконные трансформаторы тока, но имеют постоянную шину, установленную в качестве первичного проводника. Доступны типы стержней с более высоким уровнем изоляции и обычно крепятся болтами непосредственно к текущему устройству ухода.
Трансформатор тока стержневого типа
3.Втулка CT
Трансформаторы тока проходного изоляционного типав основном представляют собой оконные трансформаторы тока, специально разработанные для установки вокруг высоковольтного ввода. Обычно к этим трансформаторам тока нет прямого доступа, и их паспортные таблички находятся на шкафу управления трансформатором или выключателем.
SF6 вводов ТТ 110 кВ. Фото: Викимедиа
4. Рана КТ
Трансформаторы тока с обмоткой имеют первичную обмотку и вторичную обмотку , как и обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформаторов тока для компенсации малых токов, согласования различных коэффициентов передачи трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока.
Этот тип трансформаторов тока имеет очень высокую нагрузку , и при использовании трансформаторов тока с обмоткой следует уделять особое внимание нагрузке на ТТ источника.
Класс напряжения ТТ
Класс напряжения ТТ определяет максимальное напряжение , с которым ТТ может контактировать напрямую. Например, оконный трансформатор тока 600 В не может быть установлен на оголенном проводе 2400 В или вокруг него, однако оконный трансформатор тока на 600 В может быть установлен вокруг кабеля 2400 В, если трансформатор тока установлен вокруг изолированной части кабеля и изоляция рассчитана правильно.
Коэффициент ТТ
Коэффициент трансформатора тока — это отношение входного первичного тока к выходному вторичному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока , когда через первичную обмотку протекает 300 ампер.
Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если через первичную обмотку номиналом 300 А протекает 150 А, вторичный ток будет равен 2.5 ампер.
Коэффициент передачи трансформатора тока эквивалентен коэффициенту напряжения трансформаторов напряжения. Фото: TestGuy.
В прошлом для измерения тока обычно использовались два основных значения вторичного тока. В Соединенных Штатах инженеры обычно используют выход на 5 ампер . В других странах принят выход на 1 ампер .
С появлением микропроцессорных счетчиков и реле в промышленности наблюдается замена вторичной обмотки на 5 или 1 ампер на вторичную обмотку мА .Обычно устройства с мА-выходом называются «датчиками тока », в отличие от трансформаторов тока.
Примечание. Коэффициенты CT выражают номинальный ток трансформатора тока, а не просто соотношение первичного и вторичного токов. Например, ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5.
CT Полярность
Полярность трансформатора тока определяется направлением, в котором катушки намотаны вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки), и тем, каким образом вторичные выводы выводятся из корпуса трансформатора.
Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:
- h2 — Первичный ток, направление линии
- h3 — Первичный ток, направление нагрузки
- X1 — Вторичный ток (многоскоростные трансформаторы тока имеют дополнительные вторичные клеммы)
ТТ с разъемным сердечником, рассчитанный на 200 А. Обратите внимание на маркировку полярности в центре сердечника, указывающую направление источника.Фото: Continental Control Systems, LLC
В трансформаторах с вычитающей полярностью первичный вывод h2 и вторичный вывод X1 находятся на одной стороне трансформатора. Полярность трансформатора тока иногда указывается стрелкой, эти трансформаторы тока следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.
Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.
Условные обозначения электрических схем полярности CT
Обозначение полярности на электрических чертежах и схемах трансформаторов тока может быть выполнено несколькими различными способами. Три наиболее распространенных условных обозначения схем — это точки, квадраты и косые черты. Маркировка полярности на электрических чертежах обозначает угол h2, который должен быть обращен к источнику.
Как проверить полярность CT
Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях с батареей 9 В, используя следующую процедуру тестирования:
- Отключите все питание перед проверкой и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ. Положительная клемма измерителя подключена к клемме X1 трансформатора тока, а отрицательная клемма подключена к X2 .
- Пропустите кусок провода через верхнюю сторону окна трансформатора тока и на мгновение коснитесь положительного конца 9-вольтовой батареи со стороной h2 (иногда отмеченной точкой) и отрицательного конца , чтобы сторона h3 .Важно избегать постоянного контакта, который приведет к короткому замыканию аккумулятора.
- Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении . Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо переключить, и можно провести тест.
Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях, используя 9-вольтовую батарею.
Связано: Объяснение 6 электрических испытаний трансформаторов тока
CT Класс точности
Поскольку идеальных трансформаторов не существует, возникают небольшие потери энергии, такие как вихревые токи и тепло, вызванное током, протекающим через обмотки. Вторичный ток, который возникает в этих ситуациях, не полностью воспроизводит форму волны тока в энергосистеме.
Степень, в которой величина вторичного тока отличается от расчетного значения, ожидаемого в силу соотношения ТТ, определяется классом точности ТТ.Чем больше число, используемое для определения класса, тем больше допустимое отклонение вторичного тока от расчетного значения (погрешность).
За исключением классов с наименьшей точностью, класс точности ТТ также определяет допустимое смещение фазового угла между первичным и вторичным токами. В зависимости от класса точности трансформаторы тока делятся на Точность измерения или Точность защиты (реле) . CT может иметь рейтинги для обеих групп.
Преобразователи точности измерения
Точность измеренияТТ рассчитана на указанные стандартные нагрузки и предназначена для обеспечения высокой точности от очень низкого тока до максимального номинального тока ТТ. Из-за своей высокой степени точности эти трансформаторы тока обычно используются коммунальными предприятиями для выставления счетов .
ТТ реле точности
ТТRelay Accuracy не так точны, как ТТ измерения точности. Они разработаны для работы с разумной степенью точности в более широком диапазоне токов.Эти трансформаторы тока обычно используются для подачи тока на реле защиты. Более широкий диапазон значений тока позволяет защитному реле работать при различных уровнях неисправности.
Вы можете узнать класс точности ТТ, посмотрев на его паспортную табличку или этикетку производителя. Класс точности ТТ состоит из комбинации цифр, букв и цифр, как указано в ANSI C57.13 , и разбит на три части:
- номинальное соотношение рейтинг точности
- класс рейтинг
- максимальная нагрузка
Класс точности ТТ состоит из комбинации цифр и букв, как указано в ANSI C57.13
1. Номинальное соотношение Рейтинг точности
Это число является просто номинальным коэффициентом точности , выраженным в процентах . Например, трансформатор тока с классом точности 0,3B0,1 сертифицирован производителем как имеющий точность в пределах 0,3 процента от его номинального значения коэффициента для первичного тока 100 процентов от номинального коэффициента.
2. Рейтинг класса
Вторая часть класса точности ТТ — это буква, обозначающая приложение, для которого рассчитан ТТ.Трансформатор тока может иметь двойные номиналы и использоваться для измерения или защиты, если оба номинала указаны на паспортной табличке.
- C — Указывает, что ТТ имеет низкий поток утечки, что означает, что точность может быть рассчитана до производства
- T — Указывает, что ТТ может иметь значительный поток утечки, и точность должна определяться на заводе.
- H — Указывает, что точность ТТ применима во всем диапазоне вторичных токов от пяти до 20-кратного номинального значения ТТ.Обычно это трансформаторы тока с обмоткой.
- L — Указывает, что точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20 номинальных значениях. Точность передаточного числа может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока короткого замыкания. Обычно это оконные, проходные или стержневые трансформаторы тока.
3. Максимальная нагрузка
Третья часть класса точности ТТ — это максимальная нагрузка, разрешенная для ТТ. Как и все трансформаторы, трансформатор тока может преобразовывать только конечное количество энергии.Ограничение энергии ТТ называется максимальной нагрузкой. Если этот предел превышен, точность ТТ не гарантируется.
Для ТТ измерительного класса нагрузка выражается как сопротивление Ом . Например, коэффициент трансформатора тока с номиналом 0,3B0,1 соответствует 0,3 процента , если полное сопротивление подключенной вторичной нагрузки не превышает 0,1 Ом . ТТ класса измерения 0,6B8 будет работать с точностью 0,6 процента , если вторичная нагрузка не превышает 8.0 Ом .
Нагрузка трансформатора тока класса реле выражается как вольт-ампер, и отображается как максимально допустимое вторичное напряжение, если через вторичный контур проходит 20-кратное номинальное значение трансформатора тока (100 А для вторичного трансформатора тока 5 А). Например, защитный ТТ 2,5C100 имеет точность в пределах 2,5 процента , если вторичная нагрузка меньше 1 Ом (100 вольт / 100 ампер).
Как рассчитать нагрузку CT
- Определите нагрузку устройства, подключенного к ТТ, в ВА или сопротивлении Ом.Эта информация обычно находится на паспортной табличке устройства или в техническом паспорте.
- Добавьте импеданс вторичного провода. Измерьте длину провода между трансформатором тока и нагрузкой устройства, подключенного к вторичной цепи (найдено на шаге 1).
- Убедитесь, что общая нагрузка не превышает указанные пределы для ТТ.
Комментарии
Всего комментариев 3
Оставить комментарий Войдите или зарегистрируйтесь, чтобы комментировать.Выбор трансформаторов тока — Continental Control Systems, LLC
При выборе трансформаторов тока необходимо принять следующие решения:
- Тип : открывающийся (разъемный сердечник) или неоткрывающийся (сплошной сердечник)
- Точность : мониторинг или доход
- Размер : должен быть достаточно большим, чтобы соответствовать контролируемому проводнику
- Номинальный ток
Тип
В большинстве случаев предпочтительнее использовать трансформаторы тока с открытым или разделенным сердечником, поскольку их установка намного проще.CCS продает трансформаторы тока с твердым сердечником размером до 1,25 дюйма (31,75 мм) и номинальным током до 400 ампер.
Точность
CCS предлагает трансформаторы тока контрольного качества с типичной точностью в диапазоне от 1% до 1,5% и погрешностью фазового угла менее 2,0 градусов. Обычно они имеют характеристики точности от 10% до 100% (или 120%) номинального тока с увеличением погрешности ниже 10% номинального тока. ТТ этого класса обычно достаточно для мониторинга относительной мощности, потребляемой различными нагрузками в здании, или для сравнения экономии энергии при повышении энергоэффективности.Компания CCS также предлагает трансформаторы тока коммерческого класса с типичной точностью 0,5% и фазовой погрешностью менее 0,5 градуса. Обычно они имеют характеристики точности от 1% до 100% (или 120%) номинального тока, поэтому они являются точными в гораздо более широком диапазоне работы. Они рекомендуются для использования с измерителями дохода WattNode и в любых ситуациях, когда требуется более высокая точность или лучшая точность при низких токах (например, для контроля мощности в режиме ожидания).
Размер
Очевидно, что очень важно, чтобы отверстие в трансформаторе тока было достаточно большим, чтобы соответствовать контролируемому проводнику.Как правило, если ТТ имеет достаточно высокий номинальный ток для проводника, он должен подходить, но это не всегда так. Если вы контролируете несколько параллельных проводов (обычно более 400 А) или шинопроводов, подумайте об измерении требуемого размера трансформатора тока перед размещением заказа. Заманчиво заказать трансформатор тока максимального размера, чтобы убедиться, что он подходит, но CCS не рекомендует этого по нескольким причинам:
- ТТ большего размера может быть трудно вставить в панель.
- ТТ большего размера может быть трудно установить между другими проводами, выходящими из соседних выключателей.
- Для обеспечения максимальной точности диаметр контролируемого проводника должен быть больше половины размера отверстия ТТ. Например, проводник 4/0 AWG обычно имеет диаметр 0,64 дюйма и обычно выдерживает от 200 до 250 ампер. Он подходит для 0,75-дюймового трансформатора тока и в значительной степени заполняет отверстие (в лучшем случае для точности). Это будет примерно половина раскрытия ТТ 1,25 дюйма, что должно быть хорошо для точности. Но это будет меньше одной трети диаметра 2,0-дюймового КТ, и точность может пострадать.
См. Раздел «Размер отверстия ТТ в зависимости от размера проводника» для получения информации о некоторых распространенных размерах проводов для различных токов и рекомендуемых размерах ТТ.
Номинальный ток
Номинальный ток полной шкалы ТТ обычно следует выбирать несколько выше максимального тока измеряемой цепи (более подробную информацию см. В пик-факторе тока). В некоторых случаях вы можете выбрать трансформаторы тока с более низким номинальным током, чтобы оптимизировать точность при более низких значениях тока. Позаботьтесь о том, чтобы максимально допустимый ток для ТТ не был превышен без отключения автоматического выключателя или предохранителя.С коммерческими трансформаторами тока (Accu-CT) точность отличная при очень низких токах, поэтому самый простой подход — просто выбрать трансформатор тока с таким же номинальным током, что и номинал цепи (обычно номинал выключателя или предохранителя). находится под наблюдением. ТТ могут измерять более низкие токи, чем они были рассчитаны, путем пропускания проводника через ТТ более одного раза. Например, чтобы измерить токи до 1 А с ТТ на 5 А, пропустите провод через ТТ пять раз. ТТ теперь фактически представляет собой ТТ на 1 ампер вместо ТТ на 5 ампер.Эффективный номинальный ток ТТ — это номинальный ток, деленный на количество раз, которое проводник проходит через ТТ. Если вы используете отдельные фазы ( ØA , ØB и ØC ) измерителя WattNode для измерения различных цепей, вы можете использовать трансформаторы тока с разным номинальным током на разных фазах. Вместо установки одного значения CtAmps для всех фаз вы можете использовать разные значения для каждой фазы: CtAmpsA , CtAmpsB и CtAmpsC (Примечание: не все модели WattNode поддерживают разные модели WattNode. Номинальный ток трансформатора тока для разных фаз).
Параллельные трансформаторы тока для высоких токов
Наша линейка трансформаторов тока Accu-CT может использоваться в приложениях с током выше 600 А путем установки одного ТТ на каждый фазный провод в комплекте. ТТ проще всего установить там, где комплекты кабелепроводов входят в панель. Черные и белые выходные провода от каждого ТТ в одной фазе соединены вместе, параллельно и подключены к соответствующей входной клемме ТТ на измерителе. Измеритель настроен на сумму номинальных токов отдельного трансформатора тока.Обратите внимание, что все трансформаторы тока должны иметь одинаковый номер детали.
Например, служба 800A может использовать два набора проводов по 500 тыс. Куб. Мил. Эту услугу можно измерить, установив ТТ модели ACTL-1250-400 на каждом фазном проводе и соединив выходы двух ТТ на каждой фазе параллельно, чтобы создать эквивалент ТТ с номиналом 800А. Дополнительную информацию можно найти в разделе «Несколько ТТ — все проводники» на странице «Измерение параллельных проводников» на нашем веб-сайте.
Прочие примечания
CCS предлагает только трансформаторы тока, которые измеряют переменный, а не постоянный ток.Значительный постоянный ток может вызвать насыщение магнитного сердечника трансформатора тока, снижая точность измерения переменного тока. Большинство нагрузок имеют только переменный ток, но некоторые редкие нагрузки потребляют постоянный ток, что может вызвать ошибки измерения. См. Статью Постоянный ток и полуволновые выпрямленные нагрузки для получения дополнительной информации.
См. Также
Одно- и трехфазные трансформаторы тока Технический бюллетень
Том Колелла, технический директор
Трансформаторы тока(ТТ) представляют собой трансформаторы измерительного типа, которые принимают большие токи и снижают их до чрезвычайно низкого значения, обеспечивая простой и безопасный метод контроля цепей без разрыва проводки.Измерения обычно производятся стандартным цифровым или аналоговым измерителем. Трансформатор тока может быть однофазным или многофазным. Трансформаторы тока имеют множество применений — от управления энергоснабжением до прецизионных измерений в медицине, автомобилестроении, авионике, телекоммуникационной промышленности и в военной сфере.
Существует три основных конфигурации трансформатора тока:
- Тороидальный сердечник: Измеряйте токи от 50 до 5000 ампер с отверстием сердечника от 1 до 8 дюймов в диаметре.Этот тип не содержит первичных обмоток. Однако линия, по которой проходит ток, проходит через центральное отверстие в трансформаторе.
- Split Core: Измеряйте токи от 100 до 5000 ампер с отверстием в сердечнике от 1 до 13 дюймов в диаметре. Разъемный сердечник имеет один конец съемного, так что провод нагрузки не нужно отсоединять для установки трансформатора тока.
- Первичная обмотка: Измерьте токи от 1 до 100 ампер, поскольку ток нагрузки проходит через первичные обмотки ТТ.
Трансформатор тока аналогичен силовому трансформатору, за исключением того, что первичная обмотка включена последовательно с проводником, по которому протекает сильный переменный ток. Этот тип трансформатора состоит всего из нескольких витков первичной обмотки. Первичная обмотка может представлять собой один виток сверхпрочной проволоки, намотанной вокруг сердечника. Вторичная обмотка трансформатора тока обычно представляет собой соотношение по сравнению с первичной обмоткой. Вторичная обмотка может состоять из большого количества витков, намотанных на магнитный сердечник с низкими потерями, в зависимости от того, насколько снижен ток, и обычно он рассчитан на ток от 1 до 5 ампер [см. Рисунок 1 ].
Трансформаторы тока могут понижать уровни тока с тысяч ампер до известного коэффициента. Первичный и вторичный токи выражаются в соотношении, например 100: 5. Это означает, что для 100 ампер, протекающих по первичному проводнику, вторичный будет показывать (протекать) 5 ампер тока. Или, для номинала 500: 1, ток в первичной обмотке будет 500 ампер, а во вторичной — 1 ампер.
Рисунок 1: Базовая конструкция трансформатора токаТрехфазный трансформатор тока
Этот тип трансформатора, по сути, представляет собой три соединенных между собой однофазных трансформатора в одном корпусе, выполненных с использованием либо одного «трехфазного сердечника», либо трех отдельных тороидальных сердечников.На рисунке 2 показан пример трехфазного трансформатора тока.
Рисунок 2: Трехфазный токТочность трансформаторов тока, а также точность измерения, указаны в МЭК 61869-1, классы 0,1, 0,2 с, 0,2, 0,5, 0,5 с, 1 и 3. Причина в обозначении класса заключается в классификации точности трансформатора тока. Например, погрешность первичного и вторичного тока для трансформатора тока класса 1 составляет + 1% при полном номинальном токе, погрешность трансформатора тока класса 0,5 составляет + 0.5% и т. Д. Буква «s» после обозначения класса указывает на высокую точность и обычно используется при измерении тарифов. Другой параметр, который следует учитывать, — это ошибки фазы, которые также описаны в рейтинге каждого класса.
Другие факторы, влияющие на точность измерения: нагрузки, внешние электромагнитные поля, изменение фазы, емкостная связь между первичной и вторичной обмотками, сопротивление между первичной и вторичной обмотками, температура, нагрузка и ток намагничивания сердечника.
Трансформаторы тока предназначены для использования в качестве пропорциональных устройств.Следовательно, вторичная обмотка никогда не должна быть в разомкнутом состоянии, так как это может привести к повреждению устройства.
Сводка
Трансформатор тока преобразует большие первичные токи во вторичные малоточные токи за счет использования магнитных сердечников. Трансформаторы тока могут быть неинвазивным способом контроля высоких токов в электроэнергетике, контрольно-измерительных приборах в авионике, автомобилестроении, военной и телекоммуникационной отраслях.
Трансформаторы тока и напряжения — Peak Demand Inc
Трансформаторы тока и напряжения
Размещено в h в инструментальных трансформаторах отТрансформаторы тока и напряжения
Стивен Шефер
Стивен — приглашенный автор Центра знаний Peak Demand и редактор журнала Learn Metering на сайте www.learnmetering.com.
CT или трансформаторы тока и PT или трансформаторы напряжения используются в измерениях для понижения тока и напряжения до более безопасных и более управляемых уровней. Многие хотят знать, что такое трансформатор тока и трансформатор напряжения. Здесь я попытаюсь развенчать заблуждение о CT PT. Еще я хочу отметить, что счетчики с номинальным током трансформатора тока используются не только как вторичный счетчик электроэнергии, но и как первичный счетчик электроэнергии.Счетчики с рейтингом CT также обычно являются счетчиками потребления.
Когда трансформаторы тока и трансформаторы используются в измерительной установке, такая установка считается трансформаторной. Некоторые люди называют измерители, в которых используется комбинация ТТ, ПТ или просто ТТ, измерителем с трансформатором тока. Услуги, рассчитанные на трансформатор, работают параллельно с услугой. Это означает, что, в отличие от автономных услуг, питание потребителя не прерывается при снятии счетчика. Причина, по которой они необходимы, заключается в том, что ток и / или напряжение измеряемой услуги слишком высоки.Это также зависит от политики и процедур утилиты. Например, некоторые коммунальные предприятия требуют, чтобы трансформатор был рассчитан на напряжение более 480 В. Пока других утилит нет.
Кроме того, некоторые коммунальные службы вообще не используют СТ в службах 480 В. Я не рекомендую эту практику для обеспечения безопасности техников счетчиков или линейного мастера, которым может потребоваться установка или снятие этих счетчиков с эксплуатации.
Итак, что делают CT? Как указывалось ранее, они служат для понижения высокого тока до безопасного управляемого уровня.Трансформаторы тока коммерческого класса спроектированы так, чтобы вырабатывать 5 ампер при номинальном значении усилителей на сервисе. Например, типичная установка в сети 120/208 на 400 А содержит 200: 5 ТТ. Когда через первичную обмотку трансформатора тока проходит 200 ампер, через клеммы вторичной обмотки выходит 5 ампер.
УCT есть паспортные таблички и характеристики, как и у любого другого электрического оборудования. Наиболее важные моменты, которые следует отметить на паспортной табличке, — это коэффициент и номинальный коэффициент. Соотношение сторон будет напечатано большими буквами на стороне CT.Типичные соотношения: 200: 5, 400: 5, 600: 5, 800: 5 и так далее. Опять же, это означает, что, когда указанное значение тока проходит через первичную сторону трансформатора тока, 5 ампер проходят через вторичную сторону.
Коэффициент рейтинга используется при определении ТТ размера, используемого в конкретной установке. Некоторые CT имеют рейтинг 4, 3, 2 или 1,5. Это означает, что производитель заявляет, что точность ТТ превышает значения, указанные на паспортной табличке. Например, ТТ 200: 5 с номинальным коэффициентом 4 будет точно измерять мощность до 800 ампер.Таким образом, если бы эта конкретная служба была бы на 800 ампер, на вторичной стороне трансформатора тока и на базе счетчика выходило бы 20 ампер. Это важно, потому что мы хотим, чтобы наши трансформаторы тока были полностью насыщенными. Это означает, что мы хотим, чтобы ТТ 200: 5 имел такой размер, чтобы токи, протекающие через первичную обмотку, имели как можно ближе к 200 ампер. Когда сердечник ТТ полностью насыщен, он является наиболее точным. CT обычно теряют часть своей точности при более низких уровнях усилителя.
Большинство трансформаторных счетчиков сегодня относятся к классу 20.Это означает, что катушки тока внутри счетчика рассчитаны на постоянный ток 20 ампер. Вы не хотите перегрузить измеритель, поместив более 20 ампер в основание измерителя, потому что вы неправильно рассчитали трансформатор тока. Например, вы не захотите вводить в эксплуатацию трансформаторы тока 200: 5, которые, как вы знаете, будут потреблять 1000 ампер на первичной стороне. Это приведет к тому, что в основании счетчика будет 25 ампер, превышающих номинальную мощность счетчика. Это приводит к потере дохода.
Для правильного выбора ТТ важно знать, какой будет фактическая подключенная нагрузка.Лучший способ сделать это — проконсультироваться с инженером. Если трансформаторы тока должны быть размещены в трансформаторе, устанавливаемом на подставке или на опоре, и от этих трансформаторов требуется только одна услуга, лучше всего подбирать трансформаторы тока таким образом, чтобы они выдерживали максимальный ток, на который рассчитан трансформатор. Это делает две вещи: во-первых, это гарантирует, что ваш трансформатор тока никогда не будет перегружен, и, во-вторых, это способ найти перегруженные трансформаторы.
Еще одна вещь, которую хотят знать многие, — это расчет размеров трансформатора тока.Я знаю, что я сказал ранее, что вам следует проконсультироваться с инженером, и вам следует это сделать, но формула, которую мы используем для определения размеров трансформатора тока для однофазного трансформатора, выглядит следующим образом:
кВА x 1000
линейное напряжение
Теперь, чтобы найти правильный размер трансформатора тока для трехфазной сети, мы используем этот расчет размеров трансформатора тока.
кВА x 1000
линейное напряжение x √3
Фактически это формула для определения максимальной допустимой нагрузки трансформаторов.Имея эту информацию, мы можем рассчитать трансформаторы тока на основе предоставленной информации.
Довольно о CT, давайте поговорим о PT. PT — это трансформаторы потенциала. Их также называют трансформаторами напряжения или трансформаторами напряжения. Они используются для понижения напряжения до безопасного уровня, чтобы его можно было измерить. ПТ обычно используются в любой установке, где напряжение в сети составляет 480 В или выше. Некоторые типичные СТ составляют 2,4: 1 и 4: 1.
Теперь, когда мы знаем, что такое CT и PT, мы можем поговорить о множителях счетчиков.Множители счетчиков используются, когда счетчики устанавливаются в трансформаторных установках. Если соотношение CT составляет 200: 5, то множитель измерителя равен 40, что составляет просто 200/5. Если у услуги есть и CT, и PT, то эти два значения умножаются, чтобы получить множитель биллинга. Например, если услуга имеет 200: 5 CT и 2,4: 1 PT, множитель будет 96. Это потому, что 40 x 2,4 = 96.
Мы также много знаем о ТТ и измерителях благодаря теореме Блонделя. Перейдите по ссылке, чтобы узнать больше об этой теореме.
Сопутствующие товары
Трансформаторы тока для измерения | Подсказка Energy Sentry Tech
Есть два типа электросчетчиков: автономные (с прямым приводом) и трансформатор номинальный.
Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик. Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.
При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом.Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения тока или общей потребляемой мощности. Информация регистрируется счетчиком.
В трансформаторах тока типа «пончик» есть два проводника или обмотки. Первичная обмотка — это линейный проводник, проходящий через центр трансформатора тока. Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.
Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается к измерителю, который прямо пропорционален первичному току.Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.
Для ТТ на 200: 5А коэффициент передачи составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А коэффициент трансформации составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.
Номинальная нагрузка (B) — это полное сопротивление цепи, подключенной ко вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока.Рейтинг нагрузки — это максимальное значение импеданса перед превышением минимальных пределов точности.
Разница в коэффициенте тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент — это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.
Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?У нас есть решение!
Высококачественные измерительные трансформаторы токаЕсли ваша программа расчета теплового коэффициента требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.
0 thoughts on “Номинальные токи трансформаторов тока: Номинальный первичный ток трансформатора тока”