Мощность через напряжение – Мощность электрического тока | Формулы и расчеты онлайн
нагрузка в однофазных и трехфазных сетях
Правильно рассчитать силу тока необходимо для многих работ, связанных с электропроводкой и проектированием схемотехнических и бытовых приборов. Ошибки или пренебрежение такими расчётами могут иметь серьезные последствия, так как от силы и мощности тока зависит тип прокладываемого кабеля, правильный выбор которого определяет пожарную безопасность и экономическую целесообразность.
Принципы расчета тока
Знать в амперах силу тока, протекающего в цепи, важно для расчета сечения провода, которым прокладывается проводка, и выбора автомата, предохраняющего сеть от перегрузок. Большее, чем нужно, значение сечения вызывает дополнительные затраты, меньшее — вызовет перегрев электропроводки, что чревато расплавлением изоляции кабеля и пожаром.
Правильный выбор автомата также важен, так как большой запас по току окажется бесполезен, если выключатель сработает поздно, и оборудование успеет выйти из строя, а слишком маленький запас вызовет очень частое срабатывание аварийного отключения при повышении потребляемой мощности в допустимых пределах.
По закону Ома можно рассчитать ток как отношение напряжения между двумя точками к сопротивлению этого участка цепи (сопротивление самого провода). Этот параметр у провода зависит от его материала, длины и сечения. При использовании стандартных материалов (алюминий или медь) единственным параметром, на который можно влиять остается сечение проводника. А он зависит от предполагаемого протекающего тока.
Сила тока в розетке на 220 В обычно не превышает 6 ампер. Это значит, что суммарная мощность подключенных к розетке электроприборов не должна превышать 1300 Вт. В противном случае требуется укладка особых проводов с увеличенным сечением.
Вычисление мощности
Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.
При постоянном напряжении
Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:
I = P / U,
где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.
Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.
Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.
При переменном напряжении
Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:
- Меньшие затраты при передаче по ЛЭП;
- Простое создание повышающих и понижающих напряжение устройств;
- Отсутствие полярности.
А для питания устройств постоянного тока применяются разного рода выпрямители.
Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:
P = U ⋅ I ⋅ cosφ,
где cosφ определяет характер нагрузки.
В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.
Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.
Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:
P = U ⋅ I ⋅ sinφ.
Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).
В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:
- Более экономная передача электричества на дальние расстояния;
- Уменьшение затрат при создании электродвигателей 3-х фазной системы;
- Равномерность механической нагрузки на электрогенератор.
Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:
P = 1,73 ⋅ I ⋅ U ⋅ cosφ.
Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.
Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:
I = P /(U ⋅ cosφ).
Выбор электроприборов
Чтобы узнать, какой бытовой прибор подойдет для электропроводки дома, а для какого лучше использовать промышленную, нужно обратить внимание на его мощность. Этот параметр всегда написан в руководстве по эксплуатации или технических характеристиках устройства.
Стоит насторожиться, если мощность указана больше 1,5 кВт, так как для таких приборов нужно использовать увеличенное сечение проводов питающей сети. Обычно домашние электроприборы имеют меньшую мощность.
Исключение могут составить стиральные машины, электроплиты, некоторые виды пылесосов. Дома с электроплитами всегда имеют для них отдельную проводку, а для питания стиральной машины лучше протянуть отдельный провод увеличенного сечения.
Далее следует определиться с выбором автоматического выключателя для групп потребителей электротока. Его следует выбирать именно на группу, с целью экономии места в распределительном щитке, и чтобы быть более свободным в подключении приборов к разным розеткам. Какие группы лучше выбрать:
- Электроплита;
- Стиральная машина и водонагреватель;
- Остальные розетки и освещение.
В домах с электроплитами наиболее высоким потреблением будет обладать именно плита. Ее мощность оценивается в 10 кВт, что при стандартном напряжении 220 В означает ток потребления 45 А, cosφ здесь равен 1. На электроплиту нужен отдельный автомат, поэтому здесь он выбирается его на 50 ампер.
Большим токопотреблением отличается также и стиральная машина. Стандартная стиралка потребляет 2,5 кВт, что соответствует 12,5 А. Несмотря на cosφ = 0,8 у электродвигателя стиральной машины, в ней большое количество электроники, поэтому для расчета берем cosφ = 1. Еще большая мощность у водонагревателя — до 8 кВт. Если предполагается использовать их одновременно со стиралкой — стоит брать автомат повышенного ампеража, так как суммарная мощность двух этих приборов составит 10,5 кВт, то есть нужен еще один автомат на 50 А. А лучше сделать два отдельных автомата: 40 А — на водонагреватель, и 15 А — на стиральную машину.
Остальные розетки и освещение можно определить в отдельную группу. Их общее энергопотребление оценивается в 1,5 кВт, то есть автомата на 10 А будет достаточно для третьей группы.
Приборы для измерения величин
Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.
С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.
Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.
Оцените статью: Поделитесь с друзьями!chebo.pro
Онлайн калькулятор — закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
automotogarage.ru
Как узнать ток зная мощность и напряжение
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн .
Как узнать ток зная мощность и напряжение?
В данном случае формула вычисления выглядит следующим образом:
Расчет силы тока онлайн:
(Не целые числа вводим через точку. Например: 0.5)
Как узнать напряжение зная силу тока?
Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:
Расчет напряжения онлайн:
Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:
Определение величины онлайн:
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Расчет цепи онлайн:
Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки »
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Автор — Антон Писарев
Мощность электрического тока
Наконец, мощность электрического тока может быть вычислена и в том случае, когда известны напряжение и сопротивление, а сила тока неизвестна. Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра.
Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Как видим, сила тока получается довольно приличной. Чтобы уберечь себя от проблем с электропроводкой в процессе эксплуатации необходимо изначально правильно рассчитать и выбрать сечение кабеля ибо от этого будет зависеть и пожаробезопасность здания.
Мощность электрического тока
Если в уже действующей цепи силу тока можно измерить специальными приборами (амперметром), то как быть при проектировании? Ведь мы не можем измерить силу тока в цепи, которой еще нет. В этом случае пользуются расчетным методом. Рассчитывается мощность на этапе планирования электропроводки в квартире. Даже наоборот: как раз потому и опаснее. Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает.
Где-то гудят насосы, гонят воду в систему, создают это самое давление. А вот наш провод электрический. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение. И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны.
И еще есть сопротивление. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R. I — сила тока. Измеряется в амперах. Измеряется в вольтах.
Собственно, это вся необходимая и достаточная для нас теория. Ты скажешь: — Зачем мне это все надо? Формулы, цифры… Основы. Как можно быть уверенным, не зная простейших истин и расчетов? Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты.
В электроэнергетике используется так называемый «переменный» ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад… И эта смена направления движения — 100 раз в секунду. Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.
Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения. А поднять напряжение перед подачей в линию и опустить его на другом конце можно, применяя трансформаторы. Это всем известные устройства, от которых мы и получаем электроэнергию на местах. Обычно электрический ток сравнивают с течением жидкости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.
Как узнать ток зная мощность и напряжение?
В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу. Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
И в проводе от этого тоже давление… Допустим, подано напряжение на резистор в 150В и по нему идет ток в 0,2А. Какая на данном резисторе развивается мощность? Существует всего 2 базовых формулы которые помогут вам понять взаимосвязь между силой тока(Амер), напряжением(Вольт), сопротивлением (Ом) и мощностью (Ватт). Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода.
Почитать еще:
- Все о желаниях 0 Где загадывают желание люди во всем мире. Есть мечта. 10 Если молодые люди любят друг друга, то и […]
- Дизайн штор для гостиной: cтилевые нюансы Для гостиной в стиле барокко подойдут фактурные, сложные обои, с воланами, бахромой, оборками и украшениями. […]
- История появления аватарок в интернете Понятие аватар было впервые использовано в 1985 году в игре Ultima. Аватар размещается рядом с каждым […]
- Люди, что означают наколки звёзды на коленях? Звезды на коленях в тюрьме означают волю и дерзость человека. Колени — самое сложное место для нанесения […]
Ток, напряжение, мощность: основные характеристики электричества
Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости.
Например, к нам в квартиру приходит по проводам электрическая энергия от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран.
Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток). которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину.
Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры.
Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения.
Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют:
засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.)
На величину электрического сопротивления влияет несколько факторов:
строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление ;
площадь поперечного сечения и длина токовода;
Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока).
Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.
В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы конкретных схем.
Рассмотрим несколько примеров их использования.
Пример №1. Как рассчитать сопротивление и мощность
Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом.
На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.
Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице.
Рассчитываем: Р=24·0,5=12 Вт.
Это же значение получим, если воспользуемся формулами (10) или (12).
Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит.
Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.
Пример №2. Как рассчитать ток
Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.
Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.
По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А.
Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.
Отличия параметров электросхем на переменном токе
При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют реактивными нагрузками. Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы.
На активных нагрузках отсутствует сдвиг фазы между током и напряжением.
Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».
Переменный синусоидальный ток в однофазной сети
Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т.
Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае.
В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол φ. За счет этой неравномерности создается ток I0 в нулевом проводе.
Переменный синусоидальный ток в трехфазной сети
Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В).
Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника.
Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений.
Также можно рассчитать общий ток потребления, зная величину полной мощности S. Для этого достаточно ее разделить на величину линейного напряжения.
Статьи и схемы
Полезное для электрика
Источники: http://moydomiksite.ru/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132, http://kontrabol.freezeet.ru/793212088-moshhnost-yelektricheskogo-toka/, http://electricalschool.info/main/osnovy/1518-tok-naprjazhenie-moshhnost-osnovnye.html
electricremont.ru
формулы, составляющие и особенности применения
В быту, как правило, применяются такие словосочетания, как потребляемая мощность или просто электрическая мощность. Всегда актуален вопрос о том, как много электроэнергии потребляет тот или другой прибор. Но в физике понятие мощности переменного тока трактуется несколько шире.
Особенности переменного тока
Формула мощности для тока, который меняется во времени по силе, напряжению и направлению, не совпадает с простой формулой для постоянного электротока. Она может примяться исключительно для вычисления мгновенного значения этой физической величины, но на практике для нахождения мощности меняющегося тока бесполезна. Рассчитывая её усреднённую величину напрямую, применяют интегрирование по такому параметру, как время. То есть интегрируется мгновенное значение на протяжении определённого периода.
Такой подход применяется для тех электрических цепей, в которых напряжение и сила электротока меняются циклически. В основном рассчитывается мощность в цепях с изменениями электрического напряжения и силы электротока по синусоиде.
В электродинамике различают связанные друг с другом понятия реактивной, активной и полной мощности.
Активная величина Real Power
Активная мощность Р измеряется в ваттах. Сокращённые варианты единицы измерения: Вт (русское обозначение) или W (международное). Само понятие этой мощностной величины означает среднее значение мгновенных показателей этой характеристики за промежуток времени Т (период). Общая формула в этом случае выглядит следующим образом:
Для электрических цепей с одной фазой изменяющегося по синусоиде тока формула выглядит так:
.
В этом выражении Ι и U являются значениями силы электротока и напряжения в среднеквадратичном представлении. А угол φ показывает, на сколько сдвинуты фазы между этими физическими величинами.
Активная мощность указывает, как быстро превращается электрическая энергия в другие типы: тепловую или электромагнитную.
Она может выражаться как через силу тока и активное сопротивление цепи r, так и через напряжение и проводимость g по формуле:
.
В любых электрических цепях этот вид мощности равняется сумме значений на отдельных элементах. В трёхфазном варианте суммируются показатели для каждой отдельной фазы.
Реактивная характеристика
Реактивная мощность Q охарактеризовывает нагрузки, создаваемые в электроустройствах периодическими изменениями энергии электромагнитного поля в цепи с переменным током, который меняется во времени по синусоидальному принципу.
Численно она равняется умножению среднеквадратичных U (напряжения), I (силы) и синуса φ (угла сдвига фаз):
.
Измеряется в вольт-амперах реактивных (русское сокращение: вар, а международное — var).
Реактивная Q даёт характеристику энергии, передающейся от источника питания к реактивным элементам и возвращающуюся обратно за временной промежуток, численно равный одному периоду колебаний. К элементам реактивного типа относят катушки индуктивности, конденсаторы, обмотки. Этот вид мощностной характеристики тока принимает:
- отрицательное значение, если нагрузка активно-ёмкостная;
- положительное — в случае активно-индуктивного характера нагрузочных элементов.
Принято считать, что устройства с положительной Q потребляют энергию, а с отрицательной, наоборот, производят. Но это условные обозначения. Реактивная мощность по факту не принимает участия в работе электротока. Синхронные генераторы, которые функционируют на электростанциях, в зависимости от численного значения тока возбуждения в обмотке могут и вырабатывать, и потреблять эту реактивную характеристику тока.
Такую особенность синхронных электрических машин используют для регулирования определённого значения напряжения сети. Чтобы устранять перегрузки либо увеличение мощностного коэффициента, осуществляют компенсацию реактивной составляющей.
Полная мощность
Полная мощность S представляется в единицах измерения с названием вольт-амперы и вычисляется через умножение действующих значений I в цепи и напряжения U на её окончаниях:
.
Этот вид электрической характеристики на практике описывает нагрузки, которые по факту налагаются потребителем на части электросети, обеспечивающей подвод электроэнергии (кабели разных видов, трансформирующие устройства и линии для передачи электрической энергии на большие расстояния).
Данные нагрузки находятся в зависимости исключительно от потребляемого тока, а не от энергии, которую по факту использует потребитель. Этот момент является причиной того, что полная мощность устройств, обеспечивающих трансформацию электрической энергии, а также распределительных щитов, измеряют в вольт-амперах, а не в ваттах.
Все виды мощностных характеристик переменного тока связываются между собой следующими математическими выражениями:
Эти формулы позволяют производить расчёты для цепей переменного тока любой конфигурации:
- Полная, выраженная через активную и реактивную.
- Активная — через полную и угол сдвига фаз.
- Реактивная — через полную и активную.
Знания этих нюансов важны при подборе оборудования и построения систем энергообеспечения различных объектов. Учёт электрических параметров устройств даёт возможность сделать правильный выбор электрических устройств и построить экономически оптимальную схему энергетического обеспечения.
220v.guru
Как найти силу тока через мощность, сопротивление и напряжение
Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.
Если известна мощность и напряжение
Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:
P=UI
После несложных мы получаем формулу для вычислений
I=P/U
Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:
Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:
Р1 = Р2/η
Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.
Находим полную мощность с учетом cosФ (он также указывается на шильдике):
S = P1/cosφ
Определяем потребляемый ток по формуле:
Iном = S/(1,73·U)
Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.
Если известно напряжение или мощность и сопротивление
Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.
I=U/R
Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:
P=UI
При этом согласно тому же закону Ома:
U=IR
То:
P=I2*R
Значит расчёт проводим по формуле:
I2=P/R
Или возьмем выражение в правой части выражения под корень:
I=(P/R)1/2
Если известно ЭДС, внутреннее сопротивление и нагрузка
Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:
I=E/(R+r)
Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.
Закон Джоуля-Ленца
Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.
Его формула выглядит так:
Q=I2Rt
Тогда расчет проводите так:
I2=QRt
Или внесите правую часть уравнения под корень:
I=(Q/Rt)1/2
Несколько примеров
В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.
1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.
Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.
R1+R2=1+2=3 Ома
Тогда рассчитать силу тока можно по закону Ома:
I=U/R=12/3=4 Ампера
При параллельном соединении двух элементов Rобщее можно рассчитать так:
Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67
Тогда дальнейшие вычисления можно проводить так:
I=12*0,67=18А
2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.
В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.
Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома
Теперь схема примет вид:
Далее находим ток по тому же закону Ома:
I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер
Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!
Наверняка вы не знаете:
Нравится(0)Не нравится(0)samelectrik.ru
Расчеты напряжения, силы, сопротивления, нагрузки электрического тока
Современная структура общества такова, что на бытовом и промышленном уровне повсеместно используется электроэнергия. Генераторные установки, вырабатывающие электроэнергию, преобразующие подстанции работают для того, чтобы передать ее потребителям на бытовые электрические приборы и промышленные электроустановки.

Общая схема передачи электроэнергии потребителям с учетом мощностей
Что такое мощность электроэнергии
В электросетях, по которым передается энергия, существует ряд основных параметров, которые обязательно учитываются при проектировании и эксплуатации электроустановок.
Одним из таких показателей является электрическая мощность, под этим подразумевается способность электроустановки генерировать, передавать или преобразовывать определенную величину электроэнергии за определенный период времени. Преобразованием считается процесс изменения электрической энергии в тепло, механические движения или другой вид энергии. Чтобы сделать расчет мощности, надо знать, как минимум, величины тока, напряжения и ряда других параметров.
Расчет тока и напряжения, мощности иногда не делают, а измеряют параметры на месте. Но такая возможность не всегда предоставляется. Надо знать, как рассчитать мощность, когда цепь обесточена, при проектировании электроустановок, уметь пользоваться таблицей законов Ома и рассчитать силу тока по известным значениям параметров. Рассчитывать мощность нагрузки и ток нагрузки приходится для того, чтобы правильно выбрать сечение проводов в цепи, величину тока срабатывания для защитных автоматов и других нужд.

Законы Ома наглядно показывают, как посчитать ток по мощности и напряжению
Физический смысл электрической мощности в цепях переменного и постоянного тока одинаковый, но от условий нагрузки в цепи мощность может выражаться разными соотношениями. Для стандартизации закономерности явлений вводится понятие мгновенное значение, что указывает на зависимость скорости преобразований электроэнергии от фактора времени.
Электрическая мощность – это величина, выражающая скорость преобразования энергии электричества в другой вид энергии, обозначается буквой «Р».
Мгновенное значение электрической мощности
Определение – электрическая мощность тесно связана с другими параметрами цепи, током и напряжением, при изменении величины одного из них изменяются другие. Поэтому показания мощности фиксируются в короткий промежуток времени – ∆t.
Напряжение в данном случае обозначают буквой «U» – это выражает разность потенциалов зарядов, перемещенных электрическим полем из одной точки в другую за промежуток времени ∆t.
Сила тока обозначается буквой «I» – это поток, переносимый магнитным полем зарядов, другими словами заряд, перенесенный во временной интервал ∆t.
Исходя из этих определений, просматривается пропорциональная зависимость между этими параметрами:
Р = UxI.
При расчетах можно учитывать зависимость мощности от сопротивления нагрузки «R». По законам Ома для участка цепи с постоянным током мощность выражается как:
Р = I2xR или P = U2|R.
Если поставить в схему питания амперметр и вольтметр, то не придется думать, как вычислить силу тока.
Обратите внимание! Амперметр ставится последовательно в цепь по отношению к сопротивлению нагрузки, а вольтметр – параллельно.
В качестве источника питания используется аккумулятор, как нагрузка установлен прожектор. В данном случае не делается расчет силы тока, параллельно нагрузке подключен вольтметр, для измерения напряжения в Вольтах. Амперметр подключается последовательно для измерения тока в Амперах. Зная показания напряжения и тока по формулам, показанным выше, легко рассчитывается мощность.
Для участков цепи с переменным током формулы расчетов сложнее – необходимо учитывать характер нагрузки.
Расчеты мощности для электроцепей переменного тока
Переменный ток и напряжение имеют синусоидальный вид, при различных нагрузках происходит смещение фазы между ними на определенный угол. По этой причине направление тока иногда может быть противоположным, от нагрузки к источнику питания. Это бывает в электродвигателях, когда обмотка начинает генерировать энергию, это негативно сказывается на эффективности работы оборудования, снижается мощность. При большом количестве потребителей в электросети характер нагрузки имеет смешанный вид, в идеале выделяют три типа нагрузки:
- Активная нагрузка, ее представляют такие электроприборы, как лампы накаливания, нагревательные тэны, спиральные электроплиты;
- Емкостная нагрузка – это конденсаторы в оборудовании различного назначения;
- Индуктивная нагрузка представлена катушками в электродвигателях, обмотках электромагнитов, дросселями и трансформаторами, другими приборами, где ток протекает через обмотки.
Емкостные и индуктивные виды выделяют как реактивную энергию в электросетях. Зная вид нагрузки, расчет потребляемой мощности делается точнее.
Расчет мощности в цепи с активной нагрузкой
Это классический случай в однофазной сети 220 В, в качестве нагрузки можно использовать обычные резисторы. Мощность рассчитывается как произведение действующих значений тока и напряжения, умноженное на соsϕ. В данном случае ϕ – угол смещения между фазами тока и напряжения.
Р = UI cos ϕ

График зависимости мощности по току и напряжению при активной нагрузке
Из графика можно узнать, что колебания тока и напряжения одинаковы по частоте и фазе, мощность всегда положительная с частотой в два раза больше.
Активная электрическая мощность характеризует процесс преобразования в сетях с переменным током энергии в тепло, механические движения, излучение света, в любой вид другой энергии. Измеряется активная нагрузка в Вт, кВт.
Расчет реактивной мощности
Как найти мощность в цепях с индуктивной и емкостной нагрузками? Это делается аналогичным образом. Расчет потребляемой мощности, как и в случае с активной нагрузкой, означает, что действующие напряжение и ток перемножаются, и результат умножается на sin ϕ. Где ϕ – угол сдвига фаз тока и напряжения.
Р = UI sin ϕ

Диаграмма, показывающая взаимосвязь параметров цепи при индуктивной нагрузке
График показывает, что мощность может принимать отрицательные значения, в этот момент энергия отдается в сторону источника питания, фактически она бесполезна и расходуется на нагрев.
Реактивная составляющая энергии характеризует работу нагрузки в виде электронного оборудования, электротехнических схем, моторов с наличием емкостной и индуктивной нагрузки. Единица измерения реактивной мощности при подсчете измеряется в Вар, это (Вольт-Ампер реактивный), обозначается буквой «Q».

Треугольник, отображающий отношение мощностей в сети
Зависимость мощности в цепи переменного тока от реактивной и активной составляющих с учетом угла сдвига фаз хорошо отображается на диаграмме, которую называют треугольником мощностей.
Формула расчета полной мощности обозначается буквой «S»
В этом случае учитывается полный импеданс рассчитываемой мощности электрического тока (комплексное сопротивление нагрузки). Тем, кому вычислением заниматься сложно даже на калькуляторе, можно воспользоваться онлайн калькуляторами на сайте https://www.fxyz.ru с вычислением мощности в цепях с различной нагрузкой. Вычисляется все мгновенно, достаточно заполнить таблицу с исходными параметрами. Когда такой калькулятор под рукой, я вычислю быстро нужные мне параметры.
Видео
Оцените статью:elquanta.ru
Знание — сила! — Основы электричества (часть 4)
Мощность. Ватт.
Напряжение измеряют вольтметром (V), а ток через нагрузку (R) — амперметром (A).
Произведение этих двух параметров есть мощность: напряжение в Вольтах умножается на ток в Амперах, получается мощность в Ваттах.
Понятно, что получить одну и ту же мощность можно при различных значениях напряжения источника тока. При напряжении источника 1 вольт, для получения мощности в 1 ватт, требуется пропустить через нагрузку ток 1 ампер (1В х 1А = 1Вт). Если же источник выдает напряжение 10 вольт, мощность в 1 ватт достигается при токе 0,1 ампер (10В х 0,1А = 1Вт).
Мощность в физике — это скорость выполнения какой-либо работы.
Чем быстрее выполняется работа, тем больше мощность исполнителя.
Мощная машина разгоняется быстрее. Мощный (сильный) человек способен быстрее затащить мешок картошки на девятый этаж.
1 Ватт — мощность, позволяющая совершить работу в 1 Дж за одну секунду (что такое джоуль описывалось выше).
Если Вы способны разогнать двухкилограммовое тело до скорости 1 м/с за одну секунду, значит, развиваете мощность 1 Вт.
Если Вы поднимаете килограммовый груз на высоту 0,1 метра за секунду, Ваша мощность равна 1 Вт ибо груз приобретает за секунду потенциальную энергию в 1 Дж.
Если уронить с одинаковой высоты одну тарелку на бетонный пол, а вторую на одеяло, первая наверняка разобьется, а вторая выживет. В чем разница? Начальные и конечные условия одинаковые. Тарелки падают с одной и той же высоты, стало быть, обладают одинаковой энергией. На уровне пола обе тарелки останавливаются — вроде все идентично. Разница лишь в том, что энергия, которую тарелка накопила в процессе полета, в первом случае выделяется мгновенно (очень быстро), а когда тарелка падает на одеяло или ковер, процесс торможения растягивается во времени.
Пусть падающая тарелка обладает кинетической энергией в 1Дж. Процесс столкновения с бетонным полом занимает, допустим, 0,001 сек. Получается, что мощность, выделяемая при ударе, равна 1/0,001=1000 Вт!
Если же тарелка плавно замедляется в течение 0,1 сек, мощность будет 1/0,1=10 Вт. Уже есть шанс выжить — если на месте тарелки окажется живой организм.
Для того и существуют зоны деформации и подушки безопасности в автомобилях, чтобы растянуть во времени процесс выделения энергии при аварии, т.е., снизить мощность при ударе. А выделение энергии, между прочим и есть работа. В данном случае, работа по разрыву ваших внутренних органов и ломанию костей.
Вообще, работа — это процесс преобразования одного вида энергии в другой.
Еще пример: можно без последствий сжечь содержимое баллона с пропаном в горелке. Но если смешать газ, содержащийся в баллоне с воздухом и воспламенить, произойдет взрыв.
В обоих случаях выделяется одинаковое количество энергии. Но во втором энергия выделяется за короткий промежуток времени. А мощность — отношение количества работы ко времени, за которое она сделана.
Касаемо электричества, 1 Вт — мощность, выделяемая на нагрузке, когда произведение тока через нее и напряжения на его концах равно единице. То есть, например, если ток через лампу равен 1 А, и напряжение на ее выводах равно 1 В, мощность, выделяемая на ней 1 Вт.
Такая же мощность будет у лампы с током 2 А при напряжении на ней 0,5 В — произведение этих величин тоже равно единице.
Итак:
P = U*I. Мощность равна произведению напряжения и силы тока.
Можем записать иначе:
I = P/U — сила тока равна мощности, деленной на напряжение.
Есть, допустим, лампа накаливания. На ее цоколе указаны параметры: напряжение 220 В, мощность 100 Вт. Мощность 100 Вт означает, что произведение напряжения, прикладываемое к ее выводом, умноженное на ток, протекающий через эту лампу равно ста. U*I=100.
Какой ток через нее будет протекать? Элементарно, Ватсон: I = P/U, делим мощность на напряжение (100/220), получаем 0,454 А. Ток через лампу 0,454 ампер. Или, иначе, 454 миллиампер (милли — тысячная доля).
Еще один вариант записи U = P/I. Тоже где-нибудь пригодится.
Теперь мы вооружены двумя формулами — законом Ома и формулой мощности электрического тока. А это уже инструмент.
Мы хотим узнать сопротивление нити накала той же стоваттной лампы накаливания.
Закон Ома говорит нам: R = U/I.
Можно не высчитывать ток через лампу, чтобы подставить его потом в формулу, а пойти коротким путем: так как I = P/U, подставляем P/U вместо I в формулу R = U/I.
В самом деле, почему бы ток (который нам неизвестен) не заменить напряжением и мощностью лампы, (которые указаны на цоколе).
Итак: R = U/P/U, что равно U^2/P. R = U^2/P. 220 (напряжение) возводим в квадрат и делим на сто (мощность лампы). Получаем сопротивление 484 Ом.
Можно проверить вычисления. Выше мы таки считали ток через лампу — 0,454 А.
R = U/I = 220/0,454 = 484 Ом. Как ни крути, верный вывод один.
Еще раз, формула мощности: P = U*I (1), или I = P/U (2), или U = P/I (3).
Закон Ома: I = U/R (4) или R = U/I (5) или U = I*R (6).
P — мощность
U — напряжение
I — ток
R — сопротивление
В любой из этих формул, вместо неизвестного значения можно подставить известные.
Если в нужно узнать мощность, имея значения напряжения и сопротивления, берем формулу 1, вместо тока I подставляем его эквивалент из формулы 4.
Получается P = U^2/R. Мощность равна квадрату напряжения, деленному на сопротивление. То есть, при изменении напряжения, приложенного к сопротивлению, выделяемая на нем мощность меняется в квадратичной зависимости: подняли напряжение в два раза, мощность (для резистора — нагрев) увеличилась в четыре раза! Так говорит нам математика.
Понять почему это происходит на практике, поможет опять-таки гидравлическая аналогия. Предмет, находящийся на некоей высоте, обладает потенциальной энергией. И, спускаясь с этой высоты, он может совершить работу. Так совершает работу по выработке энергии вода в гидроэлектростанции, опускаясь через гидротурбину с уровня водохранилища до нижнего бьефа (нижнего уровня).
Потенциальная энергия предмета зависит от его массы и от высоты, на которой он находится (тем больше бед наделает падающий камень чем больше он весит, и с чем большей высоты он падает). Также имеет значение сила тяжести в месте его падения. Один и тот же камень, падающий с одинаковой высоты более опасен на Земле, нежели на Луне, так как на Луне «сила тяжести» (сила, тянущая камень вниз) меньше земной в 6 раз. Итак, у нас три параметра, влияющих на потенциальную энергию — масса, высота и сила тяжести. Именно они и содержатся в формуле кинетической энергии:
Eк = m*g*h,
где m — масса предмета, g — ускорение свободного падения в данном месте («сила тяжести»), h — высота, на которой находится предмет.
Соберем установку: насос с приводом от двигателя будет качать воду из нижнего резервуара в верхний, а стекающая под действием силы тяжести из верхнего резервуара вода, будет крутить генератор:
Понятно, что чем выше водяной столб, тем большей энергией будет обладать вода. Увеличим высоту столба в два раза. Понятно, что при удвоенной высоте h, вода будет обладать вдвое большей потенциальной энергией, и, вроде бы, мощность генератора должна возрасти вдвое? На самом деле, его мощность увеличится в четыре раза. Почему? Потому что из-за удвоенного давления сверху, поток воды через генератор удвоится. И удвоенный поток воды при удвоенном же давлении, приведет к четырехкратному увеличению мощности, выделяемой на генераторе: в два раза больше, и в два раза сильнее.
То же самое происходит на сопротивлении, при удвоении приложенного к нему напряжения. Мы же помним формулу мощности, выделяемой на резисторе?
P = U*I.
Мощность P равна произведению напряжения U, приложенного к резистору и тока I, протекающего через него. При удвоении приложенного напряжения U, мощность, вроде как должна удвоится. Но ведь повышение напряжения ведет и к пропорциональному росту тока через резистор! Стало быть, удвоится не только U, но и I. Именно поэтому, мощность зависит от приложенного напряжения в квадратичной зависимости.
Батарея с удвоенным напряжением «закачивает» электроны на вдвое большую «высоту», и это приводит точно к такой же картине, как в гидравлическом аналоге.
Нужно узнать мощность, зная сопротивление и ток, но не зная напряжение? Нет проблем. В ту же первую формулу вместо U подставляем эквивалент U из формулы 6. Получаем P = I^2*R. Мощность равна квадрату тока, умноженному на сопротивление.
Приведенный выше гидравлический аналог поможет понять, почему. Удвоение тока через данный резистор возможно только при удвоении приложенного к нему напряжения. А стало быть, формула P = U*I, сработает и тут, несмотря на отсутствие в формуле P = I^2*R напряжения. Просто напряжение в данном случае присутствует «за кадром», прячась за другими переменными.
Еще одна странность данной формулы — мощность прямо пропорциональна сопротивлению. Разве так может быть? Ну давайте тогда вообще разорвем цепь, сопротивление возрастет до бесконечности, а значит, соответственно вырастет мощность, выделяемая на том, чего нет? Бред какой.
На самом деле все просто. Рост сопротивления приведет к соответствующему уменьшению тока через резистор. Если в формуле
P = I^2*R,
сопротивление R увеличить вдвое, то ток I уменьшится вдвое. А зависимость мощности от тока в этой формуле — квадратичная. Стало быть, мощность выделяемая на резисторе ожидаемо упадет в два раза.
И так далее. В любых комбинациях. Зная любые два параметра из четырех: напряжение, ток, сопротивление, мощность, можно узнать все остальные.
Напоминаю:
Напряжение (U) — это «разность электрического давления» между какими-либо двумя точками электрической цепи (аналог разности давлений жидкости). Единица измерения — вольт.
Ток (I) — это количество электронов, проходящих через участок цепи (аналог потока жидкости). Единица измерения — ампер. 1 А = 1 Кл/сек.
Сопротивление (R) — способность участка цепи мешать (сопротивляться) перемещению электронов (как узкое место или засор в трубе). Единица измерения — ом.
Мощность (P) — это произведение напряжения и тока (как если бы мы умножили расход воды через какой либо участок водопровода на разность давлений на концах этого участка). Единица измерения — ватт.
herozero.do.am
0 thoughts on “Мощность через напряжение – Мощность электрического тока | Формулы и расчеты онлайн”